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Abstract. The experiment aimed at development of adaptive sorting program 
on the basis of usage of algorithm selection method, machine learning system 
and algebra-algorithmic approach is conducted. Machine learning facilities 
allow to automatize constructing of adaptive algorithm on the basis of analysis 
of experimental data, related to execution of initial algorithms. Designing of 
algorithms is based on usage of systems of algorithmic algebras. 
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1 Introduction 

In recent years the necessity for developing applications, which are capable to analyze 
the information arriving during the algorithm execution, carry out forecasting and 
adapt to new circumstance, increases more and more. Development of such programs 
is associated with accumulation and analysis of a considerable quantity of 
experimental data (input, intermediate and resulting). Thus there is a problem of 
automation of extraction of helpful information from large amount of data. This 
problem is being solved within the bounds of data mining technology [18], which is 
one of actively developing areas of information technologies. Data mining is intended 
for extracting useful knowledge from large data sets by combining methods from 
statistics and artificial intelligence. There are works in several subject domains 
applying data mining, machine learning and algorithm selection methods for 
developing adaptive programs: time-series forecasting [16]; constraint satisfaction 
problems [11]; optimization [14]; sorting [7, 9]. 

The novelty of this paper consists in conducting the experiment aimed at 
development of the adaptive program with the help of machine learning and algebra-
algorithmic methodology. The author uses algebraic techniques based on Systems of 
Algorithmic Algebra (SAA) being originated within the Ukrainian algebraic-
cybernetic school [4, 5]. In previous works [3, 5] the facilities have been implemented 
in the instrumental software development system (called Integrated toolkit for Design 
and Synthesis of programs, IDS) that uses algebraic-algorithmic tools in three 
interdependent forms of representation of knowledge. The forms include analytical 
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(algebraic formulae), natural language text and flowcharts. A particular feature and 
advantage of IDS is the interactive design of syntactically correct algorithms which is 
oriented toward elimination of syntax errors during program construction process. 
The primary goal of algebraic methodology is to produce software that is correct, safe 
and portable. However, the problem of increasing the adaptability of the programs 
being developed with algebra-algorithmic approach still remains. In this paper author 
carries out the experiment aimed at developing the example of adaptive sorting 
program. The development combines algebraic technique, machine learning and 
algorithm selection. 

The outline of the paper is the following. In Section 1 the concept of algorithm 
selection problem and associated machine learning methods are considered. Section 2 
is devoted to the results of conducted experiment. 

1 Algorithm Selection Problem and Machine Learning 

The algorithm selection problem aims at selecting the best algorithm for a given 
computational problem instance according to some characteristics of the instance. The 
formal abstract model of algorithm selection problem was proposed by J. Rice [13]. 
The mentioned model can be used to explore the question “With so many available 
algorithms, which one is likely to perform best on my problem and specific 
instance?”. The main components of the model are the following: 

• the problem space P represents the set of instances of a problem class; 
• the feature space F contains measurable characteristics of the instances 

generated by a computational feature extraction process applied to P; 
• the algorithm space A is the set of all considered algorithms for tackling the 

problem; 
• the performance space Y represents the mapping of each algorithm to a set of 

performance metrics. 
Then the algorithm selection problem can be formally stated as follows. 
For a given problem instance Px∈ , with features Fxf ∈)( , find the selection 

mapping S(f(x)) into algorithm space A, such that the selected algorithm A∈α  
maximizes the performance mapping y(α(x)) ∈Y. 

The choice of features depends very much on the problem domain and the chosen 
algorithms. For example, when considering sorting algorithms for sequences of 
integers, the degree of presortedness of the input sequence is a problem feature. The 
algorithm execution time in seconds is the performance metric. 

Using “if-then” rules the solution of algorithm selection problem can be 
formulated, for example, as follows: 

 
If input data have characteristics C1, C2..., Cn,  
Then use algorithm A1 instead of algorithm A2. 

 
Algorithm selection can be either static or dynamic. Static algorithm selection 

system makes the selection and then commits to the selected algorithm, while 
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dynamic algorithm selection system may change its selection dynamically by 
monitoring the running of the algorithm. 

In many real world situations, algorithm selection is done by hand by some experts 
who have a good theoretical understanding to the computational complexities of 
various algorithms and are very familiar with their runtime behaviors. One of the 
ways of automation of algorithm selection is to use machine learning [13].  

Works [7, 9] are devoted to the automation of algorithm selection problem in the 
domain of sorting algorithms. In paper [9] authors expressed the task of sorting 
algorithm selection by considering the length of the sequence of integers to be sorted 
as the single feature, and using dynamic programming to estimate the mapping S via a 
Markov decision process. A larger study of sorting algorithms was conducted in [7] 
by H. Guo. He recognized that a sequence of integers to be sorted could be 
characterized by more than its length, but also by its degree of presortedness. Three 
measures of presortedness were used: the number of inversions (INV); number of 
runs of ascending subsequences (RUN); and the length of the longest ascending 
subsequence (LAS). He also showed that the most efficient is to use RUN metric. 

The algorithm selection method is similar to metaheuristics [10, 15]. Metaheuristic 
is a computational method that optimizes a problem by iteratively trying to improve a 
candidate solution with regard to a given measure of quality. The candidate solution is 
a member of a set of possible solutions (e.g. a set of algorithms) to a given problem. 
Metaheuristics are designed to tackle complex optimization problems where other 
optimization methods have failed to be either effective or efficient [10]. Techniques 
which constitute metaheuristics algorithms range from simple local search procedures 
to complex learning processes. 

This paper is devoted to the solution of algorithm selection problem for sorting, 
based on the approach proposed in previously mentioned work [7]. The main 
difference of this work consists in usage of algebra of algorithms for designing sorting 
programs, allowing to use high-level specifications which are not dependent on 
implementation in a specific programming language. 

In work [7] algorithm selection problem is solved using a classification, which is 
one of the machine learning methods. 

Definition. Let there is a set of objects; a classification is an algorithmic procedure 
that assigns any object from the set into one of a given number of classes [1, 2]. 

Let X = {x1..., xk} be a set of attributes of an object, Y = {1, …, m} be a set of 
labels of classes. As a result of classification the target function f is received, which is 
a mapping from X to Y, f: X → Y. 

The target function is also known informally as a classification model. 
For example, in case of algorithm selection problem for sorting the objects are 

processed arrays [7]. The attributes of objects are: 
• x1 – array size; 
• x2 – degree of presortedness. 
The labels of classes are the names of various sorting algorithms (e.g. insertion 

sort, quick sort). The target function f(x1, x2) defines for each array the name of the 
best algorithm to sort it (with regard to least execution time). In more details the 
example of the description of data for the given problem is considered in Section 2. 
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A classification technique (or classifier) is a systematic approach to building 
classification models from an input data set. The main steps of the classification 
usually are the following. The classifier is fed training data in which each object is 
already labeled with the correct class label. This data is used to train the learning 
algorithm, which creates classification models. The classification models then are 
used to classify similar data (test dataset). 

Examples of classification techniques include decision tree classifiers, rule-based 
classifiers, neural networks, support vector machines, and naïve Bayes 
classification [2]. In work [7] it is shown, that the most efficient in case of algorithm 
selection problem for sorting is to use decision trees. 

Decision tree learning is one of the most popular inductive learning methods [2]. It 
has been applied to a broad range of tasks from medical diagnosis to credit risk 
assessment. In decision tree learning, the learned function is represented by a decision 
tree. Decision trees are essentially sets of “if-then” rules. They classify training 
examples by sorting them down the tree from the root to some leaf node, which 
provides the classification of the example. Each node in the tree represents a test of 
some attribute of the training example, and each branch corresponds to one of the 
possible values for its source node (attribute). There are various algorithms for 
constructing decision trees: ID3, C4.5, NewId, ITrule, CN2, etc. [2]. 

Fig. 1 shows an example of the simplified decision tree for selection of one of the 
sorting algorithms depending on the size of the input array. The tree is constructed on 
the basis of the experimental data, obtained in work [9]. 

 

Fig. 1. Example of decision tree 

In this paper, as well as in work [7], learning experiments are conducted in Weka, 
an open-source machine learning software in Java. Weka (Waikato Environment for 
Knowledge Analysis) [17] is a collection of machine learning algorithms for solving 
data mining problems. It supports data preprocessing, clustering, classification, 
regression, visualization, and feature selection. Weka is also well-suited for 
developing new machine learning schemes. All of Weka’s techniques are predicated 
on the assumption that the data is available as a single table, where each data point is 
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described by a fixed number of attributes. The example of such table is considered in 
Subsection 2.2. 

2 Development of Adaptive Sorting Algorithm 

The goal of the experiments conducted in this work is to construct the adaptive 
sorting algorithm on the basis of several well-known algorithms. Namely, five 
algorithms were used: insertion sort, shell sort, heap sort, merge sort and quick 
sort [8]. By the adaptive sorting algorithm we mean an algorithm that takes advantage 
of size and existing order (presortedness) of its input. The experiment includes 
designing the initial algorithms with usage of algorithm algebras (see Subsection 2.1), 
and then using algorithm selection and machine learning methods to construct 
adaptive algorithm. The sorting algorithms were developed using the IDS toolkit 
[3, 5]. IDS supports automated designing of algebraic specifications of algorithms, 
called SAA schemes, and synthesis of code in programming languages (C++, Java).  

The experiment consisted of the following stages: 
1) formalized designing of initial set of sorting algorithms in systems of 

algorithmic algebra (see Subsection 2.1); 
2) preparation of training data. At first, a set of input arrays with different 

characteristic values was generated. Then all sorting algorithms were executed on 
these arrays and the algorithm running time was collected. The algorithm that 
consumes the least time in sorting the arrays is labeled as the best. Based on the 
collected data, the table with the training data is composed, which includes the 
information about the size of each array, its presortedness degree and the best 
algorithm; 

3) execution of machine learning algorithm (decision tree learning), on the training 
data with the help of Weka system; 

4) transformation of the obtained decision tree to the SAA scheme of adaptive 
algorithm; 

5) generation of programming code in C++ language based on SAA scheme; 
6) comparison of execution time of the adaptive algorithm and initial algorithms on 

a test set of arrays. 
Stages 2 to 6 are considered in more detail in Subsection 2.2. 

2.1 Formalized Designing of Programs in Systems of Algorithmic Algebras  

Sorting algorithms in this paper are designed using systems of algorithmic 
algebras [4, 5]. SAA is the two-based algebra <{U, B}; Ω>, where U is a set of 
logical conditions (predicates) and B is a set of operators, defined on an informational 
set; Ω = Ω1 ∪ Ω2 is the signature of operations consisting of systems Ω1 and Ω2 of 
logical operations and operators respectively (these will be considered below). 

Operator representations of algorithms in SAA are called regular schemes. The 
algorithmic language SAA/1 [5] is based on mentioned algebra and is used to describe 
algorithms in a natural language form. The algorithms, represented in SAA/1, are 
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called SAA schemes. The advantage of using SAA schemes is the ability to describe 
algorithms in a form suitable for a human facilitating achievement of demanded 
quality of programs. 

Operators and predicates can be basic or compound. The basic operator (predicate) 
is the operator (predicate), which is considered in SAA schemes as primary atomic 
abstraction. The compound predicates are constructed from basic ones by logical 
SAA operations: 

• disjunction: ‘condition1’ OR ‘condition2’; 
• conjunction: ‘condition1’ AND ‘condition2’; 
• negation: NOT ‘condition’. 
Compound operators are built from elementary ones by means of operations of 

serial and parallel execution operators: 
• “operator1” THEN “operator2” is the serial execution of operators; 
• IF ‘condition’ THEN “operator1” ELSE “operator2” 

END IF is the conditional execution of operators; 
• FOR ‘condition’ LOOP “operator1” END OF LOOP is the for-loop; 
• WHILE NOT ‘condition’ LOOP “operator1” END OF LOOP is the 

while-loop. 

Example 1. The serial SAA scheme of insertion sort is given below. The algorithm 
sorts the input array A of size n. The identifiers of basic operators in the SAA scheme 
are written with double quotes and basic predicates are written with single ones. 

 
SCHEME insertionSort(A, n) 
==== FOR ' (i) from (1) to (n)' 
     LOOP 
        "(temp: = a[i])" 
        THEN 
        "(j: = i - 1)" 
        WHILE NOT 'temp < a[j]' 
                  AND 
                  'j >= 0' 
        LOOP 
           "(a[j + 1] := a[j])" 
           THEN 
           "(j: = j - 1)" 
        END OF LOOP 
        "(a[j + 1] := temp)" 
     END OF LOOP      
END OF SCHEME insertionSort (A, n) 
 
IDS system (see [3, 5]), developed by the author, is intended for interactive 

constructing of algorithm schemes in SAA and generating programs in programming 
languages (Java, C++). The main component of the system is the Constructor, which 
is intended to unfold designing algorithm schemes. The schemes are designed by 
superposition of SAA language constructs, which a user chooses from the list and 
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which are considered as reusable components for construction of algorithms. The 
design process is represented by an algorithm tree. 

2.2 Experiment Results 

For testing the performance of five sorting algorithms on various input data, the 
training set of integer arrays was generated. The set consisted of 800 arrays of size 
from 10 to 100 elements and contain the sequences of the following types: 

• 500 arrays with randomly disordered elements. The random generation algorithm 
used is Algorithm 235 (Random Permutation) [6]; 

• 150 nearly-sorted arrays; 
• 150 already sorted in reverse order arrays with N permutations (with N from 0.1 

to 10% of the array size) [12]. 
For each array, the presortedness measure was computed and then all five sorting 

algorithms were executed on that array. The running time of each algorithm and the 
best algorithm, i.e., the one that takes the least time to sort the array, are recorded to a 
file. 

The presortedness degree of array A of size n is computed according to the 
formula [7] 

n
runs(A) runs'(A) = , 

where runs(A) is the number of ascending substrings, or the “runs up”, of the array A. 
runs' (A) takes values in a range (0 … 1]. 

For example, for the array 
 

A = <|10 | 4 5 7 | 1 3 | 2 6 9 | 8 |>, 
 

runs (A) = 5; 
runs' = 0.5. 

 
For an already sorted sequence, runs'(A) = 1 / n, and for a sequence in reverse 

order, runs' (A) = 1. 
The experimental data, collected during the execution of sorting programs, were 

used to generate the table with a training dataset (see Table 1). The dataset consists of 
three attributes: array size, presortedness degree (runs') and the best algorithm, where 
best algorithm is the target attribute to be predicted based on other attributes of the 
array in question. As a result of the experiment only two of five considered algorithms 
(insertion sort and quick sort), appeared to be the best in various cases. 

Distributions of size and presortedness degree of the training dataset, taking 
different values, are illustrated in Fig. 2 and Fig. 3 correspondingly. 
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Table 1. The fragment of the training dataset for selection of sorting algorithm 

Array 
number 

Array 
size 

Presortedness 
degree (runs') 

Best 
algorithm 

1 10.0 0.1 insertion 
2 10.0 0.3 insertion 
3 10.0 0.4 insertion 
4 10.0 0.5 insertion 
5 10.0 0.6 insertion 
6 10.0 0.7 insertion 
7 10.0 0.9 quick 
8 10.0 1.0 quick 

 

Fig. 2. The distribution of array size for training data 
with values “insertion” and “quick” 

 

Fig. 3. The distribution of presortedness degree for training data 
with values “insertion” and “quick” 
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In Weka system, the decision tree algorithm J4.8 was applied to the obtained 
training data.  The learned decision tree is shown in Fig. 4. The classification 
accuracy (percentage of correctly classified instances) of this tree is 93.625 %. The 
figure shows, in particular, that for small values of presortedness degree (runs' ≤ 0.4), 
the best is the insertion sorting algorithm. In other cases the algorithm selection 
depends on the array size and runs'. 

 

 

Fig. 4. The decision tree for selection of sorting algorithm 

In the IDS toolkit, the decision tree was transformed to the SAA scheme of the 
adaptive algorithm adaptiveSort(A, n), that is given below. The algorithm first 
computes the presortedness degree for the input array. Then, depending on the array 
size and runs' the corresponding algorithm (insertion sort or quick sort) is called. 
Further, IDS was used for generation of programming code in C++ language for this 
algorithm. 
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SCHEME adaptiveSort(A, n) 
==== 
"(runs := "Compute the presortedness degree for array (A) 
  of size (n)")" 
IF ‘runs <= 0.4’ THEN "insertionSort(A, n)" 
ELSE 
   IF ‘runs > 0.4’ THEN  
   IF ‘size <= 50’ THEN  
      IF ‘runs <= 0.8125’ THEN  
         IF ‘size <= 30’ THEN  
            IF ‘runs <= 0.7’ THEN "insertionSort(A, n)" 
            ELSE IF ‘runs > 0.7’ THEN  
                     IF ‘size <= 10’ THEN "insertionSort(A, n)" 
                     ELSE IF ‘size > 10’ THEN "quickSort(A, 0, n-1)" 
                           END IF 
                     END IF 
                  END IF 
            END IF 
         ELSE IF ‘size > 30’ THEN  
                  IF ‘size <= 40’ THEN "insertionSort(A, n)" 
                  ELSE IF ‘size > 40’ THEN "quickSort(A, 0, n-1)" 
                        END IF 
                  END IF 
               END IF 
         END IF 
      ELSE IF ‘runs > 0.8125’ THEN "quickSort(A, 0, n-1)" 
            END IF 
      END IF 
   ELSE IF ‘size > 50’ THEN "quickSort(A, 0, n-1)" 
         END IF 
   END IF  
   END IF 
END IF 
END OF SCHEME adaptiveSort(A, n) 
 
For verifying the efficiency of the obtained adaptive algorithm, a test set of input 

arrays was prepared. It consisted of 140 integer arrays of size 100 and included the 
same type of sequences as the training set of arrays (randomly generated, nearly-
sorted and reverse order arrays). An experiment was carried out on Intel Core 2 Quad 
CPU, 2.51 GHz, Windows XP machine. Fig. 5 shows the total execution time in 
microseconds of each sorting algorithm (first five bars) and the adaptive algorithm 
(the last bar), that were applied on the test set. The adaptive algorithm outperforms all 
sorting algorithms, that is the evidence of efficiency of the approach, proposed in this 
work. 
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Fig. 5. The total time spent by each sorting algorithm 
on the test set of arrays 

6 Conclusion 

The experiment aimed at development of adaptive sorting program on the basis of 
usage of algorithm selection method, machine learning system and algebra-
algorithmic approach is conducted. Machine learning facilities allow to automatize 
constructing of adaptive algorithm on the basis of analysis of experimental data, 
related to execution of initial algorithms. Designing of algorithms is based on usage 
of systems of algorithmic algebras. The advantages of using SAA schemes are their 
simplicity, independence from programming language and possibility of translation to 
arbitrary programming language. The experiment showed better performance of the 
developed adaptive algorithm as compared with initial sorting algorithms, which is 
the evidence of the efficiency of the proposed approach. 

The prospects of further investigations in this direction are integration of IDS and 
Weka systems, and also applying of the proposed approach for other subject domains. 
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