
On Application of Machine Learning for Development of
Adaptive Sorting Programs in Algebra of Algorithms

Olena Yatsenko

Institute of Software Systems of National Academy of Sciences of Ukraine,
Glushkov prosp. 40, 03187 Kyiv, Ukraine

oayat@ukr.net

Abstract. The experiment aimed at development of adaptive sorting program
on the basis of usage of algorithm selection method, machine learning system
and algebra-algorithmic approach is conducted. Machine learning facilities
allow to automatize constructing of adaptive algorithm on the basis of analysis
of experimental data, related to execution of initial algorithms. Designing of
algorithms is based on usage of systems of algorithmic algebras.

Keywords: algebras of algorithms, algorithm selection, data mining, decision
tree, formalized designing of programs, machine learning, sorting.

1 Introduction

In recent years the necessity for developing applications, which are capable to analyze
the information arriving during the algorithm execution, carry out forecasting and
adapt to new circumstance, increases more and more. Development of such programs
is associated with accumulation and analysis of a considerable quantity of
experimental data (input, intermediate and resulting). Thus there is a problem of
automation of extraction of helpful information from large amount of data. This
problem is being solved within the bounds of data mining technology [18], which is
one of actively developing areas of information technologies. Data mining is intended
for extracting useful knowledge from large data sets by combining methods from
statistics and artificial intelligence. There are works in several subject domains
applying data mining, machine learning and algorithm selection methods for
developing adaptive programs: time-series forecasting [16]; constraint satisfaction
problems [11]; optimization [14]; sorting [7, 9].

The novelty of this paper consists in conducting the experiment aimed at
development of the adaptive program with the help of machine learning and algebra-
algorithmic methodology. The author uses algebraic techniques based on Systems of
Algorithmic Algebra (SAA) being originated within the Ukrainian algebraic-
cybernetic school [4, 5]. In previous works [3, 5] the facilities have been implemented
in the instrumental software development system (called Integrated toolkit for Design
and Synthesis of programs, IDS) that uses algebraic-algorithmic tools in three
interdependent forms of representation of knowledge. The forms include analytical

CONCURRENCY, SPECIFICATION AND PROGRAMMING
M. Szczuka et al. (eds.): Proceedings of the international workshop CS&P 2011
September 28-30, Pułtusk, Poland, pp. 577-588

578 O. Yatsenko

(algebraic formulae), natural language text and flowcharts. A particular feature and
advantage of IDS is the interactive design of syntactically correct algorithms which is
oriented toward elimination of syntax errors during program construction process.
The primary goal of algebraic methodology is to produce software that is correct, safe
and portable. However, the problem of increasing the adaptability of the programs
being developed with algebra-algorithmic approach still remains. In this paper author
carries out the experiment aimed at developing the example of adaptive sorting
program. The development combines algebraic technique, machine learning and
algorithm selection.

The outline of the paper is the following. In Section 1 the concept of algorithm
selection problem and associated machine learning methods are considered. Section 2
is devoted to the results of conducted experiment.

1 Algorithm Selection Problem and Machine Learning

The algorithm selection problem aims at selecting the best algorithm for a given
computational problem instance according to some characteristics of the instance. The
formal abstract model of algorithm selection problem was proposed by J. Rice [13].
The mentioned model can be used to explore the question “With so many available
algorithms, which one is likely to perform best on my problem and specific
instance?”. The main components of the model are the following:

• the problem space P represents the set of instances of a problem class;
• the feature space F contains measurable characteristics of the instances

generated by a computational feature extraction process applied to P;
• the algorithm space A is the set of all considered algorithms for tackling the

problem;
• the performance space Y represents the mapping of each algorithm to a set of

performance metrics.
Then the algorithm selection problem can be formally stated as follows.
For a given problem instance Px∈ , with features Fxf ∈)(, find the selection

mapping S(f(x)) into algorithm space A, such that the selected algorithm A∈α
maximizes the performance mapping y(α(x)) ∈Y.

The choice of features depends very much on the problem domain and the chosen
algorithms. For example, when considering sorting algorithms for sequences of
integers, the degree of presortedness of the input sequence is a problem feature. The
algorithm execution time in seconds is the performance metric.

Using “if-then” rules the solution of algorithm selection problem can be
formulated, for example, as follows:

If input data have characteristics C1, C2..., Cn,
Then use algorithm A1 instead of algorithm A2.

Algorithm selection can be either static or dynamic. Static algorithm selection

system makes the selection and then commits to the selected algorithm, while

Machine Learning for Adaptive Sorting Programs in Algebra of Algorithms 579

dynamic algorithm selection system may change its selection dynamically by
monitoring the running of the algorithm.

In many real world situations, algorithm selection is done by hand by some experts
who have a good theoretical understanding to the computational complexities of
various algorithms and are very familiar with their runtime behaviors. One of the
ways of automation of algorithm selection is to use machine learning [13].

Works [7, 9] are devoted to the automation of algorithm selection problem in the
domain of sorting algorithms. In paper [9] authors expressed the task of sorting
algorithm selection by considering the length of the sequence of integers to be sorted
as the single feature, and using dynamic programming to estimate the mapping S via a
Markov decision process. A larger study of sorting algorithms was conducted in [7]
by H. Guo. He recognized that a sequence of integers to be sorted could be
characterized by more than its length, but also by its degree of presortedness. Three
measures of presortedness were used: the number of inversions (INV); number of
runs of ascending subsequences (RUN); and the length of the longest ascending
subsequence (LAS). He also showed that the most efficient is to use RUN metric.

The algorithm selection method is similar to metaheuristics [10, 15]. Metaheuristic
is a computational method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality. The candidate solution is
a member of a set of possible solutions (e.g. a set of algorithms) to a given problem.
Metaheuristics are designed to tackle complex optimization problems where other
optimization methods have failed to be either effective or efficient [10]. Techniques
which constitute metaheuristics algorithms range from simple local search procedures
to complex learning processes.

This paper is devoted to the solution of algorithm selection problem for sorting,
based on the approach proposed in previously mentioned work [7]. The main
difference of this work consists in usage of algebra of algorithms for designing sorting
programs, allowing to use high-level specifications which are not dependent on
implementation in a specific programming language.

In work [7] algorithm selection problem is solved using a classification, which is
one of the machine learning methods.

Definition. Let there is a set of objects; a classification is an algorithmic procedure
that assigns any object from the set into one of a given number of classes [1, 2].

Let X = {x1..., xk} be a set of attributes of an object, Y = {1, …, m} be a set of
labels of classes. As a result of classification the target function f is received, which is
a mapping from X to Y, f: X → Y.

The target function is also known informally as a classification model.
For example, in case of algorithm selection problem for sorting the objects are

processed arrays [7]. The attributes of objects are:
• x1 – array size;
• x2 – degree of presortedness.
The labels of classes are the names of various sorting algorithms (e.g. insertion

sort, quick sort). The target function f(x1, x2) defines for each array the name of the
best algorithm to sort it (with regard to least execution time). In more details the
example of the description of data for the given problem is considered in Section 2.

580 O. Yatsenko

A classification technique (or classifier) is a systematic approach to building
classification models from an input data set. The main steps of the classification
usually are the following. The classifier is fed training data in which each object is
already labeled with the correct class label. This data is used to train the learning
algorithm, which creates classification models. The classification models then are
used to classify similar data (test dataset).

Examples of classification techniques include decision tree classifiers, rule-based
classifiers, neural networks, support vector machines, and naïve Bayes
classification [2]. In work [7] it is shown, that the most efficient in case of algorithm
selection problem for sorting is to use decision trees.

Decision tree learning is one of the most popular inductive learning methods [2]. It
has been applied to a broad range of tasks from medical diagnosis to credit risk
assessment. In decision tree learning, the learned function is represented by a decision
tree. Decision trees are essentially sets of “if-then” rules. They classify training
examples by sorting them down the tree from the root to some leaf node, which
provides the classification of the example. Each node in the tree represents a test of
some attribute of the training example, and each branch corresponds to one of the
possible values for its source node (attribute). There are various algorithms for
constructing decision trees: ID3, C4.5, NewId, ITrule, CN2, etc. [2].

Fig. 1 shows an example of the simplified decision tree for selection of one of the
sorting algorithms depending on the size of the input array. The tree is constructed on
the basis of the experimental data, obtained in work [9].

Fig. 1. Example of decision tree

In this paper, as well as in work [7], learning experiments are conducted in Weka,
an open-source machine learning software in Java. Weka (Waikato Environment for
Knowledge Analysis) [17] is a collection of machine learning algorithms for solving
data mining problems. It supports data preprocessing, clustering, classification,
regression, visualization, and feature selection. Weka is also well-suited for
developing new machine learning schemes. All of Weka’s techniques are predicated
on the assumption that the data is available as a single table, where each data point is

Machine Learning for Adaptive Sorting Programs in Algebra of Algorithms 581

described by a fixed number of attributes. The example of such table is considered in
Subsection 2.2.

2 Development of Adaptive Sorting Algorithm

The goal of the experiments conducted in this work is to construct the adaptive
sorting algorithm on the basis of several well-known algorithms. Namely, five
algorithms were used: insertion sort, shell sort, heap sort, merge sort and quick
sort [8]. By the adaptive sorting algorithm we mean an algorithm that takes advantage
of size and existing order (presortedness) of its input. The experiment includes
designing the initial algorithms with usage of algorithm algebras (see Subsection 2.1),
and then using algorithm selection and machine learning methods to construct
adaptive algorithm. The sorting algorithms were developed using the IDS toolkit
[3, 5]. IDS supports automated designing of algebraic specifications of algorithms,
called SAA schemes, and synthesis of code in programming languages (C++, Java).

The experiment consisted of the following stages:
1) formalized designing of initial set of sorting algorithms in systems of

algorithmic algebra (see Subsection 2.1);
2) preparation of training data. At first, a set of input arrays with different

characteristic values was generated. Then all sorting algorithms were executed on
these arrays and the algorithm running time was collected. The algorithm that
consumes the least time in sorting the arrays is labeled as the best. Based on the
collected data, the table with the training data is composed, which includes the
information about the size of each array, its presortedness degree and the best
algorithm;

3) execution of machine learning algorithm (decision tree learning), on the training
data with the help of Weka system;

4) transformation of the obtained decision tree to the SAA scheme of adaptive
algorithm;

5) generation of programming code in C++ language based on SAA scheme;
6) comparison of execution time of the adaptive algorithm and initial algorithms on

a test set of arrays.
Stages 2 to 6 are considered in more detail in Subsection 2.2.

2.1 Formalized Designing of Programs in Systems of Algorithmic Algebras

Sorting algorithms in this paper are designed using systems of algorithmic
algebras [4, 5]. SAA is the two-based algebra <{U, B}; Ω>, where U is a set of
logical conditions (predicates) and B is a set of operators, defined on an informational
set; Ω = Ω1 ∪ Ω2 is the signature of operations consisting of systems Ω1 and Ω2 of
logical operations and operators respectively (these will be considered below).

Operator representations of algorithms in SAA are called regular schemes. The
algorithmic language SAA/1 [5] is based on mentioned algebra and is used to describe
algorithms in a natural language form. The algorithms, represented in SAA/1, are

582 O. Yatsenko

called SAA schemes. The advantage of using SAA schemes is the ability to describe
algorithms in a form suitable for a human facilitating achievement of demanded
quality of programs.

Operators and predicates can be basic or compound. The basic operator (predicate)
is the operator (predicate), which is considered in SAA schemes as primary atomic
abstraction. The compound predicates are constructed from basic ones by logical
SAA operations:

• disjunction: ‘condition1’ OR ‘condition2’;
• conjunction: ‘condition1’ AND ‘condition2’;
• negation: NOT ‘condition’.
Compound operators are built from elementary ones by means of operations of

serial and parallel execution operators:
• “operator1” THEN “operator2” is the serial execution of operators;
• IF ‘condition’ THEN “operator1” ELSE “operator2”

END IF is the conditional execution of operators;
• FOR ‘condition’ LOOP “operator1” END OF LOOP is the for-loop;
• WHILE NOT ‘condition’ LOOP “operator1” END OF LOOP is the

while-loop.

Example 1. The serial SAA scheme of insertion sort is given below. The algorithm
sorts the input array A of size n. The identifiers of basic operators in the SAA scheme
are written with double quotes and basic predicates are written with single ones.

SCHEME insertionSort(A, n)
==== FOR ' (i) from (1) to (n)'
 LOOP
 "(temp: = a[i])"
 THEN
 "(j: = i - 1)"
 WHILE NOT 'temp < a[j]'
 AND
 'j >= 0'
 LOOP
 "(a[j + 1] := a[j])"
 THEN
 "(j: = j - 1)"
 END OF LOOP
 "(a[j + 1] := temp)"
 END OF LOOP
END OF SCHEME insertionSort (A, n)

IDS system (see [3, 5]), developed by the author, is intended for interactive

constructing of algorithm schemes in SAA and generating programs in programming
languages (Java, C++). The main component of the system is the Constructor, which
is intended to unfold designing algorithm schemes. The schemes are designed by
superposition of SAA language constructs, which a user chooses from the list and

Machine Learning for Adaptive Sorting Programs in Algebra of Algorithms 583

which are considered as reusable components for construction of algorithms. The
design process is represented by an algorithm tree.

2.2 Experiment Results

For testing the performance of five sorting algorithms on various input data, the
training set of integer arrays was generated. The set consisted of 800 arrays of size
from 10 to 100 elements and contain the sequences of the following types:

• 500 arrays with randomly disordered elements. The random generation algorithm
used is Algorithm 235 (Random Permutation) [6];

• 150 nearly-sorted arrays;
• 150 already sorted in reverse order arrays with N permutations (with N from 0.1

to 10% of the array size) [12].
For each array, the presortedness measure was computed and then all five sorting

algorithms were executed on that array. The running time of each algorithm and the
best algorithm, i.e., the one that takes the least time to sort the array, are recorded to a
file.

The presortedness degree of array A of size n is computed according to the
formula [7]

n
runs(A) runs'(A) = ,

where runs(A) is the number of ascending substrings, or the “runs up”, of the array A.
runs' (A) takes values in a range (0 … 1].

For example, for the array

A = <|10 | 4 5 7 | 1 3 | 2 6 9 | 8 |>,

runs (A) = 5;
runs' = 0.5.

For an already sorted sequence, runs'(A) = 1 / n, and for a sequence in reverse

order, runs' (A) = 1.
The experimental data, collected during the execution of sorting programs, were

used to generate the table with a training dataset (see Table 1). The dataset consists of
three attributes: array size, presortedness degree (runs') and the best algorithm, where
best algorithm is the target attribute to be predicted based on other attributes of the
array in question. As a result of the experiment only two of five considered algorithms
(insertion sort and quick sort), appeared to be the best in various cases.

Distributions of size and presortedness degree of the training dataset, taking
different values, are illustrated in Fig. 2 and Fig. 3 correspondingly.

584 O. Yatsenko

Table 1. The fragment of the training dataset for selection of sorting algorithm

Array
number

Array
size

Presortedness
degree (runs')

Best
algorithm

1 10.0 0.1 insertion
2 10.0 0.3 insertion
3 10.0 0.4 insertion
4 10.0 0.5 insertion
5 10.0 0.6 insertion
6 10.0 0.7 insertion
7 10.0 0.9 quick
8 10.0 1.0 quick

Fig. 2. The distribution of array size for training data
with values “insertion” and “quick”

Fig. 3. The distribution of presortedness degree for training data
with values “insertion” and “quick”

Machine Learning for Adaptive Sorting Programs in Algebra of Algorithms 585

In Weka system, the decision tree algorithm J4.8 was applied to the obtained
training data. The learned decision tree is shown in Fig. 4. The classification
accuracy (percentage of correctly classified instances) of this tree is 93.625 %. The
figure shows, in particular, that for small values of presortedness degree (runs' ≤ 0.4),
the best is the insertion sorting algorithm. In other cases the algorithm selection
depends on the array size and runs'.

Fig. 4. The decision tree for selection of sorting algorithm

In the IDS toolkit, the decision tree was transformed to the SAA scheme of the
adaptive algorithm adaptiveSort(A, n), that is given below. The algorithm first
computes the presortedness degree for the input array. Then, depending on the array
size and runs' the corresponding algorithm (insertion sort or quick sort) is called.
Further, IDS was used for generation of programming code in C++ language for this
algorithm.

586 O. Yatsenko

SCHEME adaptiveSort(A, n)
====
"(runs := "Compute the presortedness degree for array (A)
 of size (n)")"
IF ‘runs <= 0.4’ THEN "insertionSort(A, n)"
ELSE
 IF ‘runs > 0.4’ THEN
 IF ‘size <= 50’ THEN
 IF ‘runs <= 0.8125’ THEN
 IF ‘size <= 30’ THEN
 IF ‘runs <= 0.7’ THEN "insertionSort(A, n)"
 ELSE IF ‘runs > 0.7’ THEN
 IF ‘size <= 10’ THEN "insertionSort(A, n)"
 ELSE IF ‘size > 10’ THEN "quickSort(A, 0, n-1)"
 END IF
 END IF
 END IF
 END IF
 ELSE IF ‘size > 30’ THEN
 IF ‘size <= 40’ THEN "insertionSort(A, n)"
 ELSE IF ‘size > 40’ THEN "quickSort(A, 0, n-1)"
 END IF
 END IF
 END IF
 END IF
 ELSE IF ‘runs > 0.8125’ THEN "quickSort(A, 0, n-1)"
 END IF
 END IF
 ELSE IF ‘size > 50’ THEN "quickSort(A, 0, n-1)"
 END IF
 END IF
 END IF
END IF
END OF SCHEME adaptiveSort(A, n)

For verifying the efficiency of the obtained adaptive algorithm, a test set of input

arrays was prepared. It consisted of 140 integer arrays of size 100 and included the
same type of sequences as the training set of arrays (randomly generated, nearly-
sorted and reverse order arrays). An experiment was carried out on Intel Core 2 Quad
CPU, 2.51 GHz, Windows XP machine. Fig. 5 shows the total execution time in
microseconds of each sorting algorithm (first five bars) and the adaptive algorithm
(the last bar), that were applied on the test set. The adaptive algorithm outperforms all
sorting algorithms, that is the evidence of efficiency of the approach, proposed in this
work.

Machine Learning for Adaptive Sorting Programs in Algebra of Algorithms 587

Fig. 5. The total time spent by each sorting algorithm
on the test set of arrays

6 Conclusion

The experiment aimed at development of adaptive sorting program on the basis of
usage of algorithm selection method, machine learning system and algebra-
algorithmic approach is conducted. Machine learning facilities allow to automatize
constructing of adaptive algorithm on the basis of analysis of experimental data,
related to execution of initial algorithms. Designing of algorithms is based on usage
of systems of algorithmic algebras. The advantages of using SAA schemes are their
simplicity, independence from programming language and possibility of translation to
arbitrary programming language. The experiment showed better performance of the
developed adaptive algorithm as compared with initial sorting algorithms, which is
the evidence of the efficiency of the proposed approach.

The prospects of further investigations in this direction are integration of IDS and
Weka systems, and also applying of the proposed approach for other subject domains.

References

1. Classification in machine learning. –
 http://en.wikipedia.org/wiki/Classification_in_machine_learning
2. Classification: Basic Concepts, Decision Trees, and Model Evaluation. – www-

users.cs.umn.edu/~kumar/dmbook/ch4.pdf
3. Doroshenko, A., Kotyuk, M., Nikolayev, S., Tseytlin, G., Yatsenko, O.: Developing Parallel

Programs with Algebra of Algorithms and Heuristic Facilities. Proc. Int. Workshop

588 O. Yatsenko

“Concurrency: Specification and Programming” (CS&P 2009), Kraków-Przegorzały,
Poland, 28–30 September 2009 (2009) 142–153

4. Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya, L.: A Theory of Clones and
Formalized Design of Programs. Proc. Int. Conf. “Concurrency, Specification and
Programming” (CS&P'2006), 27–29 September 2006, Wandlitz, Germany (2006) 328–339

5. Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya, L.: Intensional Aspects of Algebra
of Algorithmics. Proceedings of International Workshop “Concurrency, Specification and
Programming” (CS&P’2007), 27–29 September 2007, Lagow (Poland) (2007)

6. Durstenfeld, R.: Algorithm 235: Random permutation. Communications of the Association
for Computing Machinery, 7:420 (1964)

7. Guo, H.: Algorithm selection for sorting and probabilistic inference: A machine learning-
based approach. Ph.D. dissertation, Kansas State University (2003)

8. Knuth, D.E.: The art of computer programming: Sorting and Searching, volume 3. Addison-
Wesley (1981)

9. Lagoudakis, M., Littman, M., Parr, R.: Selecting the right algorithm. In Proceedings of the
AAAI Fall Symposium Series: Using Uncertainty within Computation (2001)

10.Olafsson, S.: Metaheuristics. – http://www.public.iastate.edu/~olafsson/metaheuristics.pdf
11.Samulowitz, H., Memisevic, R.: Learning to solve QBF. In Proceedings of the 22nd AAAI

Conference on Artificial Intelligence (2007) 255–260
12.Slightly Skeptical View on Sorting Algorithms. –

http://www.softpanorama.org/Algorithms/sorting.shtml
13.Smith-Miles, K.A.: Cross-Disciplinary perspectives on meta-learning for algorithm

selection. ACM Comput. Surv., 41, 1, Article 6 (December 2008) (2008) 25 p.
14.Smith-Miles, K.A.: Towards insightful algorithm selection for optimization using meta-

learning concepts. In Proceedings of the IEEE Joint Conference on Neural Networks (2008)
4118–4124

15.Tseng, L.Y.: Metaheuristic Methods and Their Applications. –
http://163.17.20.188/IAE/manager/intraspeech/file/file_7.pdf

16.Wang, X., Smith, K.A., Hyndman, R.: Characteristic-Based clustering for time series data.
Data Mining Knowl. Discov. 13 (2006) 335–364

17.Weka Project home page. – http://www.cs. waikato.ac.nz/ml/weka/
18.Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann (2011) 629 p.

http://www.public.iastate.edu/~olafsson/metaheuristics.pdf�
http://163.17.20.188/IAE/manager/intraspeech/file/file_7.pdf�

