Rational Agents at the Marketplace*
(extended abstract)

N.V. Shilov and N.O. Garanina

A.P. Ershov Institute of Informatics Systems,
Lavren’ev av., 6, Novosibirsk 630090, Russia,
{garanina, shilov}@iis.nsk.su

Abstract. We study multiagent algorithms for the following problem:
There are buyers (customers) and salesmen at the marketplace; all cus-
tomers are rational agents; in contrast, all salesmen are not agents, but
every salesman has individual price for every buyer; the problem is to
define a rationality-based protocol of pairwise negotiation, flips/swaps
(of salesmen) between agents that leads every agent (1) to knowledge
about its individual salesman, and (2) to knowledge that it is impossible
to reduce the total price to be paid by swapping salesmen. We call this
problem Rational Agents at the Marketplace. The problem is related to
the classical Cake-Cutting Problem (also known as Fair Division Prob-
lem), and to Mars Robot Puzzle that we examined previously.

1 Introduction

A multiagent system is a distributed system [11] that consists of agents. An agent
is an autonomous reactive object (in OO-sense) whose internal states could be
characterized in terms of Beliefs (B), Desires (D), and Intentions (I). Agent’s
Beliefs represent its “knowledge” about itself, other agents and an “environ-
ment”; this “knowledge” may be incomplete, inconsistent, and (even) incorrect.
Agent’s Desires represent its long-term aims, obligations and purposes (that may
be controversial). Agent’s Intensions are used for a short-term planning. Reactiv-
ity means that every agent could change its Beliefs, Desires, and Intentions after
communication and interaction with other agents (including an environment),
but every agent is autonomous, i.e. a change of “personal” Beliefs, Desires and
Intentions is not decreed by other agents. Agents of the described kind are usu-
ally called BDI-agents [13]. A rational agent has clear “preferences” and always
chooses the action (in feasible actions) that leads to the “best” outcome for it-
self; a bounded rationality is “decision making” limited by the cognitive abilities
of agents (e.g. the finite amount of time they have to make decisions) [7]. A
multiagent algorithm is a distributed algorithm [11] that solves some problem
by means of cooperative work of agents in a multiagent system.

* The research has been supported by Russian Foundation for Basic Research (grant
10-01-00532-a) and by Siberia Branch of Russian Academy of Science (Integration
Grant n.2/12).

CONCURRENCY, SPECIFICATION AND PROGRAMMING
M. Szczuka et al. (eds.): Proceedings of the international workshop CS&P 2011
September 28-30, Puttusk, Poland, pp. 465-476

466 N.V. Shilov, N.O. Garanina

In this paper we exam the following problem that we call Rational Agents at
the Marketplace (RAM-problem or RAMP).

There are m > 1 customers (buyers) and n > 1 salesmen (traders) at the
marketplace. Every salesman has a (single) unit of some indivisible good
for sale, and every buyer wants to buy exactly one unit of the good. All
salesmen offer their units of the good individually to buyers by individ-
ual prices {ps,b eN:1<b<misabuyer,1 <s<nisa salesman}.
At the very beginning every buyer chooses its individual salesmen. All
buyers are rational agents that can communicate, negotiate, make con-
cessions, and flip (change) and swap their individual salesmen pairwise
(and only pairwise) in peer-to-peer (P2P) manner so that all concessions
and swaps must be rational for both participating agents.
Problem: Design a multiagent algorithm (protocol) for negotiations and
concessions, changes (“flips”) of salesmen, exchanges (“swaps”) of sales-
men by buyer that eventually leads every buyer to knowledge about its
individual salesman with whom it could make a beneficial (i.e. rational)
deal

1. without conflicts (concurrency) with other buyers, and

2. no pairwise swap can improve (reduce) the total price payed by buy-

ers.

This problem grew up from our study of the following Mars Robot Puzzle
(MRP) [9].

There are n > 1 autonomous agents (“robots”) and (the same) number
of shelters on a plane part of Mars. Locations of all shelters are fixed
and known to all robots. Every robot could communicate with any other
robot in P2P manner. Every robot knows its own position, but is not
aware about positions of other robots.

At some moment all robots fix their current positions, and have to select
individual shelters to move at by a straight route. Assume that there
are no obstacles (like rocks, holes, robots and shelters, etc.) between any
robot and any shelter. Definitely, robots should not collide (it means
that their routes should not intersect). Hence, every individual robot
can move to its shelter only when it knows for sure that it will not
collide with any other robot on the route.

Problem: Design a multiagent algorithm that guarantees that every robot
will eventually know that its route to the selected shelter does not inter-
sect with routes of other robots (and hence robots will not collide in a
motion).

The difference between RAMP and MRP is manyfold. First, in RAMP agents
are assumed to be rational, while in MRP agents do not care about their benefits
(preferences) at all. Next, MRP has a clear geometric interpretation, but it is
not clear from the very beginning, whether any intersection-free set (of routes)
exists, and, hence it is not obvious that a desired protocol may exist. Fortunately,

Rational Agents at the Marketplace (extended abstract) 467

the existence of these routes could be proved by contradiction, or by reduction
to the assignment problem in Graph Theory [3], or to the convex hull problem
in Combinatorial Geometry. At the same time MRP is closely related to the
path-planning problem in Artificial Intelligence. In contrast, RAMP has no a
geometric interpretation, but it is seems a priori that some protocol may exist.

Nevertheless, RAMP and MRP are closely related due to the core protocol
SMEx for MRP [9]. This protocol is a multiagent variant of a local search al-
gorithm for a combinatorial geometry problem suggested by E.W. Dijkstra [10].
We presented in the paper [9] a series of modifications of SMEx protocol that
solve MRP problem, and proved (manually) their correctness. All these modifi-
cations belong to a class of so-called wave algorithms [11], since they meet the
following properties:

— a termination: each computation is finite;
— a decision: each computation contains at least one decide event;
— a dependence: each event potentially influences all computations.

All our algorithms in this paper rely upon the following fairness communi-
cation assumption [9]: communication (in a multiagent system) is said to be
fair, if every agent which would like to communicate with any other agent will
communicate eventually!. We distinguish belief and knowledge notions accord-
ing to the famous Plato thesis: Knowledge is true belief. Thus our approach to
knowledge and belief is not very formal like in [5, 4], but nevertheless we believe
that it could be formalized in terms of Kripke structures and indistinguishable
worlds. We also assume, that the total number of customers m and the complete
set of customers is common knowledge in this group of agents (customers) [4],
and that every customer b € [1..m] knows its individual price-list (i.e. the set
Py = {psp € N : 1 < s < n}) sorted in the ascending order (i.e. the cheapest
first, the most expensive — the last). We interpret this price-list as buyer’s pref-
erences, its rationale for flipping/swapping traders. At the same time we assume
a bounded rationality as follows: a buyer never mind to remember data of other
customers and always is looking for the most rational local action (i.e. just one
step ahead). We use pseudocode a-la [11] to present algorithms (protocols) in
this paper.

At the same time RAMP is closely related to the classic Cake Cutting Problem
(CC-problem, also known as Fair Division Problem) that has been introduced
by a group of Polish mathematicians, Hugo Steinhaus, Bronislaw Knaster and
Stefan Banach [2]. The CC-problem is to divide an infinitely dividable resource
(“cake”) in such a way that all recipients believe that they have received a fair
amount. A special cases of the problem are proportional and envy-free division.
A division is said to be envy-free if each recipient believes that according to his
measure no other recipient has received more than he has of a heterogeneous
cake; in contrast, a proportional division deals with a homogeneous cake where
each of m recipients have to receive exactly 1/m of the cake’s volume.

! In terms of Linear Temporal Logic: F((agent 1 wants to talk to agent 2) U (agent 1
and agent 2 are talking))

468 N.V. Shilov, N.O. Garanina

Differences between RAMP and CC-problem are evident: in CC-problem a
cake is an infinitely dividable resource, while in RAMP-problem a “resource”
has been cut already onto “salesmen”; solutions of the CC-problem may be
sequential, while solutions (if any) of RAMP must be multiagent (i.e. distributed,
parallel and concurrent) by the problem statement.

But in spite of these differences, RAMP and CC-problem have something in
common since they both are examples of a new research paradigm of social soft-
ware [6]. This interdisciplinary research paradigm borrows tools and techniques
from game theory, computer science, theoretical programming for formal ana-
lyzes and design of social procedures. We believe that our paper will contribute
to this field of research by study of the RAMP-problem.

The rest of the paper is organized as follows. The next section 2 sketches a
protocol for “initial” choices of salesmen by buyers (i.e. that satisfies the first
constraint of RAMP). The following section 3 presents a protocol for the most
“rational” for buyers distribution of salesmen that is possible to arrange by
pairwise swaps (i.e. that satisfies the second constraint of RAMP). Finally, we
conclude in the last section 4 with a discussion of further research topics.

2 Looking for a salesman

In this section we design and prove a multiagent algorithm (protocol) for ratio-
nal negotiations between buyers that eventually leads every buyer to knowledge
about its individual salesman with whom it could make a deal without conflicts
(concurrency for a salesman) with other buyers. We assume that all customers
(buyers) arrive to the marketplace simultaneously. One may consider an alterna-
tive opportunity: buyers arrive one by one or (more generally) group by group
(one by one or by a single group in particular). But this “more general” situa-
tion could be reduced to the simultaneous arrival: since m (the total number of
customers) is common knowledge, all buyers may just wait until all have arrived
to the marketplace.

The protocol consists of the algorithm LSM (Look for a SalesMan) for an
individual agents and a communication scheduler. At every moment every buyer
has some salesman (current salesman) as its current intention; at the very be-
ginning this intention is the salesman with the best (cheapest) price for this
customer. Beliefs of every buyer are represented by two integer counters: NC
for Number of Conflicts and C'F for Conflict-Free buyers; NC represents agent’s
upper estimation of number of buyers with whom it could have conflicts, and,
respectively, C'F represents its lower estimation of number of agents that have
no conflicts at all; in particular, the agent believes that it does not compete
for the current salesman with any other buyer as soon as NC = 0; the agent
believes that there are competition for any salesman at the marketplace as soon
as NC =0 and CF = 2 x (m — 1), i.e. it believes that it has no rivals, and it
checks twice that all buyers believe that they do not compete for their salesmen.
But in the case when two agents (say ¢ and j) compete for a salesman, then they
play the following static game with complete information [1] that we denote as

Rational Agents at the Marketplace (extended abstract) 469

Flip Game(i, j):
i\j| bid flip
bid |(fi, f;) (0,1;)

Two moves (strategies) in this game are to bid for the same salesman and to
flip to the next salesman. Before the game every participating agent k € {i,5}
sends to the partner two integer values: [, is its loss?, if it flips, and fj, is its fine?
for simultaneous bidding or flipping with the partner. These individual payoff
values I, and fi are known to every agent k € [1..m] a priori. Then both agents
compute a mixed strategy Nash equilibrium (that is a rational behavior) and
play the corresponding mixed strategies [1] until they make different moves (i.e.
one flips, another bids).

Description of a fair scheduler for planning contacts of agents is out of scope
of our paper. Pseudocode of the LSM-algorithm follows, but first we would
like to comment a meaning of some variables: Me is a personal agent’s num-
ber; cur_sman, next_sman, par_sman — the current, next, partner’s salesman;
par_bel — partner’s belief that it (the partner) is conflict-free; contacts — a
set of buyers; my_loss — a loss due to flipping salesmen; par_loss — partner’s
loss due to flipping salesmen; my_fine — a personal fine for simultaneous bid-
ding/flipping (it is known to the agent); par_fine — partner’s fine for simulta-
neous bidding/flipping; pro_bid solves the Flip_Game in mixed strategies.
algorithm LSM: :
const Me : integer in [1..m)]
const my_fine : integer;
var my_loss, par_loss, par_fine : integer;
var NC : integer in [1..m];
var CF : integer in [1..2%*m];
var contacts : set of [1..m];
var partner : integer in [1..m];
var cur_sman, next_sman, par_sman : integer in [l..n];
var par_bel : boolean;
var pro_bid : real in [0..1];

begin

1: NC:= (m - 1); CF:= 0;

2: cur_sman := the salesman with the cheapest price in Pps.;
3: repeat

4: if NC > 0 then NC:= (m - 1);

5: contacts:= set of all buyers but Me;

6: repeat

7: partner := a buyer in the contacts ready to communicate;*
8: start communication session with the partner:

2 This value must be negative, since the agent flip a better salesman to a worse sales-
man.

3 This value must be negative, since time is money.

4 A scheduler resolves this request.

470 N.V. Shilov, N.O. Garanina

9: { send <cur_sman>, <NC=0> to partner ||
receive <par_sman>, <par_bel> from partner }
10: if cur_sman = par_sman then
11: begin
12: next_sman:= a salesman with the next to cur_sman’s price
according to P, if it exists, cur_sman otherwise;
13: my_10ss:= Peyr_sman,Me — Pnewt_sman,Me ;
14: { send <my_loss>, <my fine> to partner ||
receive <par_loss>, <par_fine> from partner }
15: pro_bid := probability of My bid in Nash equilibria
in Flip_Game(Me,partner);
16: repeat // Play Flip_Game;
17: my move:= some_in {cur_sman:pro_bid,
next_sman: (1 - pro_bid)};®
18: { send <my move> to partner ||
receive <par_move> from partner }
19: until (my_move=cur_sman A par_smanz#par_move) V
(my_move7#cur_sman A par_sman=par_move) ;
20: cur_sman:= my.-move; NC:= (m - 1); CF:= 0
21: end
22: elseif NC > 0O
23: then {NC:= (NC - 1); CF:= 0}
24: else if par_bel
25: then CF:= CF + 1
26: else {NC:= (m - 1); CF:= 0}

27 close communication session with partner;
28: contacts:= remove partner from contacts;
29: until contacts becomes empty
30: until (NC = 0 A CF = 2x(m - 1))
end.
Some important properties of this LSM-algorithm are accumulated in the
following Lemmas 1, 2 and 3. Their proofs will be published in a forthcoming
full research report.

Lemma 1. Assume that two agents i and j play Flip_Game(i, j) where all pay-
off values l;, f;, l; and f; are negative®. Then Nash equilibrium in mized strategies
in Flip_Game(i, j) exists (and is unique) iff f1 <li and fa <ls.

Let remark that lines 13 — 19 of the above algorithm LSM contains a game-
theoretic procedure for conflict resolution between the agent and its partner. Let
LSM’ be a variant of the algorithm LSM, with any procedure (non-deterministic,
probabalistic or deterministic) in these lines for conflict resolution such that

® Select My next move according to assigned probabilities.

5 This assumption is very natural, since losses l; and l; are due to choice of the
next price in the ascending order, and fines f; and f; are due to simultaneous bid-
ding/flipping, i.e. due to loss of time (but time is money).

Rational Agents at the Marketplace (extended abstract) 471

either the agent flips to its next salesman or (alternatively) the partner flips to
its next salesman.

Lemma 2. Assume that it is common knowledge in a system that all agents
ezecute one and the same algorithm LSM' . Then every agent in this system at
every moment of time after execution of line 2 always knows that all salesmen
that gives smaller price to the agent than its current salesman are intensions of
some other agents.

Let us recall that communication is said to be fair in a multiagent system,
if every agent which would like to communicate with any other agent will com-
municate eventually.

Lemma 3. Assume that all agents of a system execute one and the same al-
gorithm LSM , and that communication is fair in the system. Then the system
eventually terminates.

The desire of every buyer is to select in a rational way an individual salesman
and to know that it could make a deal with the salesman without a competition
with other buyers. Lemmas 1, 2 and 3 together imply the following proposition.

Proposition 1.

If a system with fair communication consists of m > 0 buyers each of which
would like to make an individual deal with some of n > m salesmen, it is
common knowledge (in the system) that all buyers are agents that execute
algorithm LSM, and for every buyer b its payoff value my_fine is less than
min{ps p — psvp = 8, 8" € [1.n] and s” has the next price to the price of
s"in Py},

then every agent will eventually terminate, it will know upon termination that
nobody in the system will never compete for its current salesman cur_sman,
and hence it will be able to make a deal with this salesman.

Proof of this proposition will be published in a forthcoming full research report.
Unfortunately, we do not know yet whether the outcome of the LSM-algo-
rithm is a Pareto-optimal assignment or not. This topic requires more research.

3 Exchange by salesmen

In this section we design and prove a multiagent algorithm (protocol) for ratio-
nal negotiations between buyers (who already have their individual salesmen)
that eventually leads every buyer to knowledge that it is impossible to improve
(reduce) by pairwise swapping salesmen the total price all buyers have to pay.
Again the protocol comprises two algorithms: SWP (SWaPping) for an individ-
ual agents and a fair communication scheduler; description of a scheduler is out
of scope of our paper, SWP-algorithm is similar to the above LSM-algorithm, it
is discussed and presented in the sequel.

472 N.V. Shilov, N.O. Garanina

At every moment every buyer knows an individual salesman (a current sales-
man) as its current intention (and it knows that nobody competes for this sales-
man); at the very beginning this current salesman is known initial salesman
(for example due to the previous LSM-algorithm). Again, beliefs of every buyer
include two integer counters: NS for Number of Swaps and SF for Swap-Free
buyers; these counters NS and SF have informal semantics similar to semantics
of counters NC and C'F in the algorithm LSM: NS represents agent’s upper es-
timation of number of buyers with whom it could have swaps, and, respectively,
SF represents its lower estimation of number of agents that believe they have
no swaps at all; in particular, the agent believes that it will not swap the current
salesman with any other buyer as soon as N.S = 0; the agent believes that there
are competition for any salesman at the marketplace as soon as NS = 0 and
SF = 2 x (m — 1), i.e. it believes that it will no swaps, and it checks twice
that all buyers believe that they will not swap their salesmen. But (in contrast
to LSM-algorithm) the are two options how two agents could solve whether to
swap their salesmen or not.

The first is similar to Flip-Game in the LSM-algorithm: two agents (say ¢
and j) play the following static game with complete information that we denote
as Swap_-Game(i, j):

i\j ‘decline swap
decline| (0,0) (fi, f;)
swap |(fi, f;) (9i, 95)

Two moves (strategies) in this game are to decline and to swap of the salesmen.
Before the game every participating agent k € {i,j} sends to the partner two
integer values: its gain” gy, if agents swap their salesmen, and f is its fine®
for disagreement on declining and swapping with the partner. Again, these in-
dividual payoff values g; and f; are known to every agent ¢ a priory. Then both
agents compute a mixed strategy Nash equilibrium (that is a rational behavior)
and play the corresponding mixed strategies until they make correlated beneficial
moves. Study of this option is a topic for further research.

The second option is inspirited by SMEx-algorithm that solves MRP un-
der the assumption of fair communication [9]. This time two agents (say i
and j) also play a static game with complete information that we denote by
Coop_Gameg (i, 7):

i\j | decline swap
decline| (0,0) (0,(1—a)xg)
swap (Oé*g,O) (a*g7(1_a)*g)

In this game «, (1 — «) € (0,1) represent share (concession) of the total gain
g = gi; + g;. In principle this value could vary from game to game, but we
would like to assume that it is fixed (for the sake of simplicity) and is common
knowledge for all agents. Two moves (strategies) in this game are to decline and

" In contrast to I in Flip_Game, this value could be positive as well as negative.
8 This value must be negative as in the Flip_Game.

Rational Agents at the Marketplace (extended abstract) 473

to swap of the salesmen. Before the game every participating agent k € {i,j}
sends to the partner its gain g in the case of swap®. This game has a Nash
equilibrium in pure strategies: (decline, decline) if ¢ < 0, and (swap, swap) if
g > 0. We call this game Cooperative Game since rational agents that swap their
salesmen iff it is beneficial and then they share the total gain in some proportion
(in contrast to Swap_Game, where everyone gets its own gain of loss even in the
case when the total gain is positive).

Pseudocode of the SWP-algorithm is presented below. Again, we would like to
comment a meaning of some variables before the description for the readability:
Me — personal number; Init — initial salesman; cur_sman, par_sman — current,
partner’s salesman; par_bel — partner’s belief that it (the partner) has nothing
to swap; contacts — a set of buyers; my_gain — a gain due to swapping salesmen;
par_gain — partner’s gain due to swapping salesmen.
algorithm SWwP: :
const Me : integer in [1..m)]
const Init : integer in [1..n]
var cur_sman, par_sman : integer in [l..n];
var NS : integer in [1..m];
var SF : integer in [1..2*m];
var contacts : set of [1..m];
var partner : integer in [1..m];
var par_bel : boolean;
var my_gain, par_gain : integer;

begin
1: NS:= (m - 1); SF:= 0;
2: cur_sman := Init;
3: repeat
4: if NC > 0 then NC:= (m - 1);
5: contacts:= set of all buyers but Me;
6: repeat
7: partner := a buyer in the contacts ready to communicate;!°
8: start communication session with the partner:
9: { send <cur_sman>, <NS=0> to partner ||
receive <par_sman>, <par_bel> from partner }
10: mY—gain:= Pcur,mnan,]V[e - Ppar,sman,]ﬁe;
11: { send <my_gain> to partner ||
receive <par_gain> from partner }
12: if my_gain + par_gain > 0 // Solve Coop_Game.

then {cur,sman:= par_sman; NS:= (m - 1); SF:= O}
13: else if NS > 0

14: then {NS:= (NS - 1); SF:= 0}
15: else if par_bel
16: then SF:= SF + 1

9 This value could be positive as well as negative as in the Swap_Game.
10 A scheduler resolves this request.

474 N.V. Shilov, N.O. Garanina

17: else {NS:= (m - 1); SF:= 0}
18: close communication session with partner;
19: contacts:= remove partner from contacts;
20: until contacts becomes empty
21: until (NC = 0 A CF = 2%(m - 1))
end.
Some important properties of this SWP-algorithm are accumulated in the
following two Lemmas 4 and 5. Their proofs will be published in a forthcoming
full research report.

Lemma 4. Assume that it is common knowledge in a system that all agents
execute one and the same algorithm SWP, and that every agent in the system
has known its initial individual salesman before execution of the algorithm. Then
every agent in this system at every moment of time after the execution of line 2
always knows some individual salesman that is someone in the set of all initial
individual salesmen.

Lemma 5. Assume that all agents execute one and the same algorithm SWP,
that every agent has initial individual salesman before execution of the algorithm,
and that communication is fair in the system. Then the system eventually ter-
minates.

Lemmas 4 and 5 together imply the following proposition.
Proposition 2.

If a system with fair communication consists of m > 0 buyers each of which
knows some initial individual salesman among n > m salesmen, it is common
knowledge (in the system) that all buyers are agents that execute algorithm
SWP,

then cvery agent will eventually terminate, it will know upon termination an
individual salesman (that is someone in the set of all initial individual sales-
men), and it will know that it is impossible to reduce the total price all buyers
have to pay by pairwise swapping salesmen.

Proof of this proposition will be published in a forthcoming full research report.

In the Conclusion we demonstrate that the above algorithm SWP can not
solve the graph-theoretic assignment problem that is (in our settings) to compute
an assignment of buyers to robots with the cheapest total price [3]. But we do not
know whether our two multiagent algorithms LSM and SWP coupled together
could solve the problem or not. This topic also requires further research.

4 Conclusion

This paper is an extended and revised version of a preliminary short abstract
[8]. In both papers we use imperative pseudocode a-14 [11] to present algorithms
(protocols) LSM and SWP. It makes our agents just “executers”. In contrast,

Rational Agents at the Marketplace (extended abstract) 475

logic pseudocode (similar to [12]) is more adequate for presentation of intelli-
gent agents. So, the next research topic is transition from imperative to logical
pseudocode, i.e. to intelligent agents at the marketplace.

But what is more interesting for us in the case of LSM and SWP algorithms,
is the following phenomenon: the common knowledge in a system of agents ex-
ecuting these algorithms emerges after double-check of individual beliefs. This
observation leads us to the following topic for further research: When multiple
(but finite and bounded) double-check of individual beliefs leads to common
knowledge?

Let us repeat here also couple of other topics for further research that have
been mentioned at the end of Sections 2 and 3: Whether the outcome of the
LSM-algorithm is a Pareto-optimal assignment? Whether algorithms LSM and
SWP coupled together could solve the assignment problem?

Unfortunately, SWP-algorithms alone cannot solve the assignment problem
as follows from a the counterexample below.

b\s| s1|s2|ss3
by |0] 1] 3
b | 3101
bs | 11310

This table presents weighted bipartite graph that consists of the vertices {by,
ba, bs} for buyers and {s1, s2,s3} for producers. Assume also that the initial
assignment of producers to consumers is by < So, by < s3 and b3 < s;1. In these
settings, the exchange in line 12 of the algorithm SWP cannot work and hence
the buyers will terminate with the unchanged assignment, but this assignment
is not optimal.

References

1. Apt K., Gréadel E. (Eds.) Lectures in Game Theory for Computer Scientists. —
Cambridge University Press, 2011.

2. Brams S.J. and Taylor A.D. Fair Division — From cake-cutting to dispute
resolution. — Cambridge University Press, 1996.

3. Burkard R., Dell’Amico M., Martello S. Assignment Problems. — SIAM,
20009.

4. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge.
— London: MIT Press, 1995.

5. Hintikka J. Knowledge and Belief. — Cornell University Press, 1962.

6. Parikh R. Social Software. — Synthese, v.132, 2002, p. 187-211.

7. Russell S.J., Norvig P. Artificial Intelligence: A Modern Approach (3rd ed.).
— Prentice Hall, 2010.

8. Shilov N.V., Garanina N.O. Rational Agents at the Marketplace. — In Pro-
ceedings of the 3rd Workshop Knowledge and Ontologies *ELSEWHERE* (July
01, 2011, Novosibirsk, Russia). — A.P. Ershov Institute of Informatics Systems,
2011, p.21-28.

476

9.

10.

11.

12.

13.

N.V. Shilov, N.O. Garanina

Shilov N., Garanina N. and Bodin E. Multiagent approach to a Dijkstra
problem. — In Proceedings of Workshop on Concurrency, Specification and
Programming CS&P’2010 (Helenenau, September 27 — 29, 2010). — Humboldt-
Universitat zu Berlin. Informatik-Bericht Nr.237, v.1, p.73-84. (Available at
http://www2.informatik.hu-berlin.de/ki/CSP2010/proceedings2010.zip, vis-
ited May 10, 2011.)

Shilov N.V., Shilova S.0O. Etude on theme of Dijkstra. ACM SIGACT News,
2004, v35(3), p.102-108.

Tel G. Introduction to Distributed Algorithms. — Cambridge University Press,
2nd Edition, 2000.

Valiev M.K., Dekhtyar M.I., and Dikovsky A.Ya. Systems of Agents Con-
trolled by Logical Programs: Complexity of Verification. Programming and Com-
puter Software, 2009, v.35(5), p.266-281.

Wooldridge M. An Introduction to Multiagent Systems. — John Willey & Sons
Ltd, 2002.

