
Update Propagator for Joint Scalable Storage

Pawe l Leszczyński and Krzysztof Stencel

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18, 87-100 Toruń

{pawel.leszczynski,stencel}@mat.umk.pl

http://www.mat.umk.pl

Abstract. In recent years, the scalability of web applications has be-
come critical. Web sites get more dynamic and customized. This increases
servers’ workload. Furthermore, the future increase of load is difficult
to predict. Thus, the industry seeks for solutions that scale well. With
current technology, almost all items of system architectures can be mul-
tiplied when necessary. There are, however, problems with databases in
this respect. The traditional approach with a single relational database
storage has become insufficient. In order to achieve scalability, architects
add a number of different kinds of storage facilities. This could be error
prone because of inconsistencies in stored data. In this paper we present
a novel method to assemble systems with multiple storages. We pro-
pose an algorithm for update propagation among different storages like
multi-column, key-value, and relational databases.

Key words: multi storage, scalability, key-value storage, column family
storage, scalability, data consistency, web applications

1 Introduction

Modern web applications provide users with a significant number of interactive
and personal features. These require several queries to a database and make an
application data-intensive. As a number of users grows, a database becomes a
bottleneck of the whole system. All the other components of systems scale well
and can be easily extended while scaling the database component is non-trivial.
Scalability plays a noteworthy role in the web industry. At the beginning of
the operation of a new application, only a few resources are needed. However,
its owner has to be prepared for expansion. When the website suddenly gains
popularity, the system architecture needs to be ready for a workload boost.

The problem of a database bottleneck is well-recognized in the industry, and
many fixes have been proposed, however, the general solution is still unknown.
When a database workload increases, it is a common practice to split a database
into smaller parts, and distribute on more than one server. However, this is not
a scalable architecture and rather a fix for current problems. The other option
is to migrate some data into scalable storages. For this purpose one can apply a
local NoSQL storage, or use SaaS platforms (Software as a Service) like Amazon

CONCURRENCY, SPECIFICATION AND PROGRAMMING
M. Szczuka et al. (eds.): Proceedings of the international workshop CS&P 2011
September 28-30, Pułtusk, Poland, pp. 334-345

Update Propagator for Joint Scalable Storage 335

S3, Amazon SimpleDB, or others. The general impression is that, whatever the
solution has been chosen, database is split into several smaller instances running
on different storage engines and servers. This however, makes the overall system
architecture more complicated and, as a result, makes an application harder to
maintain, and makes the whole development process more expensive. Sometimes
the same data is stored in several locations, and the application’s logic needs to
keep the replicated data in a consistent state. This requires developers to take
care of all data writes and apply them on several storages. When dealing with
big applications, this can lead to errors which are hard to detect and repair.

In this paper, we propose a novel data propagation algorithm for joint stor-
ages that maintains replicated data in multiple sources in a consistent state.
When an update on one source occurs, our system modifies data in other stor-
ages, if it is needed. Figure 1 shows an architecture of the constructed system.
We believe that, the proper update propagation on underlying storages allows
constructing a scalable joint storage while taking all advantages of the under-
lying systems. The paper makes the following contributions. (1) We suggest a
novel architecture model for building several storage systems into a system. (2)
We present an update propagation algorithm for keeping data in a consistent
state.

The paper is organized as follows. In Section 2 we summarize the related
work. Section 3 describes the motivating example of a bookstore application. In
Section 4 we introduce our data model, and in Section 5 we define the problem in
a formal way. Section 6 describes the propagation algorithm. Section 7 concludes.

2 Related Work

Several publications address scalability and consistency issues. The paper [1] de-
scribes design choices and principles for a scalable storage. The authors address
a problem of filling the gap between key-value and relational storage, which is
investigated in our research. The article [10] categorizes consistency levels into:
serializable, session consistency, adaptive, and mixed. Serializable corresponds
to a full transactional model while session consistency only assures to read own
writes. In the adaptive level the system adjusts consistency to the current situ-
ation. This is done by comparing the cost per transaction. The system is hosted
on an Amazon platform and is aware of a total hosting cost and a cost of a single
failed transaction. When workload changes, it changes the consistency level to
serve data at the lowest possible cost. The research addresses the same problem
as ours, however, the cost comparison methodology restricts mainly to SaaS.

An interesting, ongoing research is a modular cloud storage system called
Cloudy [9]. It is going to be built on the top of different storage engines sim-
ilarly to our system. Cloudy provides interfaces for read and write operations.
This makes underlying storages invisible for an application server and is a clear
design pattern. However, this concept tends to be complicated and hard to main-
tain. Updates are mainly simple, and mostly modify a single record while reads
get more complicated. Additionally, there are plenty of NoSQL storages and they

336 P. Leszczyński, K. Stencel

change rapidly with new updates that makes storage internals difficult to main-
tain up to date. Furthermore, NoSQL storages provide plenty of API clients like
JSON, XML, THRIFT [16] etc. and rewriting all of them is almost impossible.
This issue is not present in the architecture from Figure 1 since we only care
about a proper update propagation.

Fig. 1. The update propagator architecture

The general problem can be described as keeping data consistent in different
storages. We have also examined possible solutions in problems that are similar,
but not exactly the same. One of them, is a consistent caching which means an
evaluation of invalidation clues of the cached data when an update on a data
source occurs. Authors of [8, 7, 12] present a model that detects inconsistency
based on statements’ templates. However, their approach cannot handle join
of attribute families or aggregation operators that are very common in web
applications. Our approach is based on a graph with edges that determine the
impact of the update operations on the cached data. The idea of the graph
representation has been presented in [2, 5, 6]. The vertices of the graph represent
instances of update statements and cached data objects. However, nowadays
most web pages are personalized, and number of data objects has increased, and
multiplied by a number of application users. According to these observations,
the graph size can grow rapidly and the method becomes impractical. The graph
size cannot depend on the size of data. In our approach the dependency graph
has vertices that represent data modifications and read operations. We present
a dependency graph algorithm whose efficiency depends only on a number of
columns.

3 Motivating Example

Let us now consider a simple bookstore platform that allows listing, searching,
and buying books. Additionally each book has a list of opinions displayed on
its info page. The database of the presented application needs to store: book

Update Propagator for Joint Scalable Storage 337

information, users’ opinions on books, and information about sold items and
users who bought them. Figure 2 depicts an example data model.

Fig. 2. The simple bookstore: book information, opinions, sold items and user data

One can identify the most common queries that performed on the platform.
Users list books, view result pages and full-text search items. When a book’s
page is loaded, the system retrieves the information on this book together with
the opinions. When a user decides to buy a product, the system updates database
to adjust the number of available items.

When creating a scalable and efficient architecture, several different storages
could be used in order to achieve better performance. Indexing engines like
Sphinx [15] or Lucene [11] can be used for paging and searching products. If the
number of products is large, the number of opinions can be expected to grow
rapidly. Thus, it is worth storing them in a distributed column family storage like
Cassandra [4]. Product information is accessed frequently and key-value storages
like MemcacheDB [13] or Redis [14] may be applied. When selling products, it is
frequently a business requirement to store the accountancy data in a relational
database to ensure the transactional correctness.

As this analysis shows, in order to achieve better performance of our hypo-
thetical system, it is reasonable to build different types of storage into it. In the
following Sections, we show methods how to architect such a system and most
notable, how to preserve the required level of consistency among various storage
components.

4 Update Propagator

In this section, we present our data model and define the consistency problem
in a formal way. Then we describe how a dependency graph is constructed and
how it is used for proper data modifications.

338 P. Leszczyński, K. Stencel

4.1 Basic Schema Assumptions

Suppose our data consists of the k relations: R1, R2, . . . , Rk. We assume that
each relation has exactly one primary key element, and for the clarity we name
it id.

Ri(id, ri,1, ri,2, ri,3, . . . , ri,ni
) (1)

This means that, for each relation Ri, the following functional dependency is
satisfied:

id→ ri,1, ri,2, ri,3, . . . , ri,ni (2)

In our schema, we allow one-to-many associations between the relations R and
S and denote R ≺ri S. This means that, ri is a foreign key in S and each tuple
in S has a value of ri equal to the primary key of some tuple in R. We also
assume, our schema is in the third normal form (3NF). Any two relations R and
S are associated, R C S, if there exist relations S1, S2, . . . , Si and attributes r1,
r2, . . . , ri+1 such that:

R ≺r1 S1 ≺r2 S2 . . . Si−1 ≺ri Si ≺ri+1
S. (3)

We also allow one-to-many associations between attributes of the same relation,
R ≺r R, that may be useful when having hierarchical data. As an opposite, we
do not allow one-to-one associations between the relations. The schema is used
to represent abstract data architecture rather than to define how data is stored.
According to this, one-to-one associations can be replaced with a single relation
since it does not influence concrete data storages.

4.2 Write Operations

Our data model adds also some restrictions to data accesses and modifications.
We assume that each write operation modifies a single tuple in a projection
relation and is specified by an id parameter. We distinguish three types of write
operations: adding a new tuple, editing an existing tuple attributes’ except for
id, and deleting it. In general case, a write operation can be represented as:

(R, type, valueid, {(ri, valueri), . . . , (rj , valuerj)}) (4)

Changes are applied on a relation R. When adding a new tuple, we fill it with
attributes’ values from the fourth parameter. As a result of an operation in
underlying storages, we retrieve valueid that is the primary key of a new tuple.
In case of updating an existing row, valueid determines the tuple, and the last
element contains attribute, that are going to be changed, and their new values.
The list of attributes and values remains empty when deleting a tuple. The tuple
is then determined by valueid as in the update case.

Update Propagator for Joint Scalable Storage 339

4.3 Underlying Storages

Next we are going to define data stored in underlying storages. Suppose R is a
relation and S is an arbitrary sequence of relations associated with R:

S = (S1, S2, . . . , Si) ∧R C S1 ∧R C S2 ∧ . . . ∧R C Si (5)

For each Sj ∈ S we take relations Sj,1, Sj,2, . . .Sj,k and attributes rj1 , rj2 , . . . ,
rjk such that:

R ≺rj1
Sj,1 ≺rj2

Sj,2 ≺rj3
. . . ≺rjk

Sj . (6)

Then we define RSj
as follows:

RSj = Sj,1 onSj,1.id=rj2
Sj,2 on . . . Sjk onSj,k.id=rk Sj (7)

Let r1, r2, . . . , ri denote attributes of R,RS1
, RS2

, . . . , RSi
. In our data model we

allow projections of the form:

πR.id,r1,r2,...(R onR.id=r11
RS1

onR.id=r21
RS2

. . . onR.id=ri1
RSi

) (8)

In other words, we allow joins between R and arbitrary number of relations as-
sociated with R. We require that the primary key of R is projected and allow
arbitrary attributes from R,RS1

, . . . , RSi
to be projected. We call such projec-

tion a safe projection and R is denoted as the primary relation of the projection.
Since we allow the same relation attribute to be projected several times,

we distinguish between relation attributes and projection attributes. For each
projection attribute, we collect a sequence of foreign key relation attributes used
to project it, and we call it a trace.

The underlying storages can also contain processed results of safe projections.
This can be simple operation of count or sum. For this purpose we define two
types of selections that are allowed in our model: safely updatable and incre-
mentally updatable. The first type applies, when a tuple can be modified based
on its current data and an update U . An example of such operation is a count
aggregation, while a sum is not such a selection, since given a sum value and
modification of one row, we cannot recompute it. We need to know the former
value of an element to compute the difference between former and current state.
The sum is incrementally updatable selection, i.e. when an update U adds a new
tuple, a tuple can be modified based on its current content and U .

5 Consistency Problem

The problem can be specified as follows. Suppose a data model constructed as
defined in section 4.1, where data is stored in different data storages. When an
update request occurs, the system needs to apply it to the underlying storages.
Generally speaking the problem may be understood as finding a function that
applies data changes of a given update to the underlying storages. This can
lead to several problems. First, updating storages has to be an atomic operation

340 P. Leszczyński, K. Stencel

and cannot partially modify storages leaving some data unchanged. Second, an
updating function needs to handle associations between relations: for instance
adding a new tuple into a storage may cause invalidation of tuples in other
storages. This intuitive description of the problem leads us to a formal definition.

Definition 1 (Data Consistency Problem–DCP). Suppose a system with
projections P1, P2, . . . , Pj containing data in a state T1, T2, . . . , Tj. An update U
changes a tuple in some relation and modifies a state of projections into T ′1, T ′2,
. . . , T ′j, where Ti = T ′i if Pi has not been changed. A consistent data propagator
is a computable function F, such that F (U, T1, . . . , Tj) = (T ′1, . . . , T

′
j).

Suppose n is a total number of tuples stored in underlying storages, n = |P1|
+ |P2| + . . . + |Pj |. Additionally let us define m as a sum of the number of
projections stored in underlying storages and the number of projected attributes.
This means that m depends on a data schema complexity, in contrast to n, which
is dependent on a size of stored data. The complexity of algorithms solving a
DCP problem is a function of n and m. The purpose of the presented research is
to provide a construction which is independent of n. This will assure a scalability
of the constructed system, since its complexity will not depend on a data size.

6 The Propagator Algorithm

6.1 The Dependency Graph

This section describes how a dependency graph is constructed. Let G denote
a dependency graph with G = (V,Estrong, Eweak), where V stands for a set of
vertices and Estrong, Eweak stand for sets of directed edges, which are called
strong and weak edges respectively.

First let us assume A is the smallest set that contains all attributes of all
relations:

A = Attr(R1) ∪Attr(Ri) ∪ . . . ∪Attr(Rk) (9)

where Attr(R) stands for the set of attributes in relation R. At this stage, we
distinguish attributes from different relations with the same name and consider
them as separate elements of A. Then P is a set of all safe projections that are
stored in the underlying storages:

P = {P1, P2, P3, . . .} (10)

In the data model, we allow modifications of single tuples. Suppose U is an
update operation, as specified in the equation (4). Let us now define a function
Map(U) as follows:

Map(U) = (R, type, {ri, . . . , rj}) (11)

The method maps a write operation so that, two updates that perform the same
operation on the same attributes, are mapped into the same value. Next we
define M as a set of all values of Map:

M = {Map(U1),Map(U2),Map(U3), . . .} (12)

Update Propagator for Joint Scalable Storage 341

Then a set of vertices V is defined as a sum of A, P , and M :

V = A ∪ P ∪M (13)

Next we define strong and weak edges contained in G. Suppose relations R and
S such that R ≺r S. Each primary key is connected by strong edges with all
foreign keys in the relation:

(S.id, S.r) ∈ Estrong (14)

and each foreign key is connected by a strong edge with the primary key of the
foreign relation:

(S.r,R.id) ∈ Estrong (15)

Each projection vertex π is connected by a strong edge with the primary key
of its primary relation. The edge goes from the primary key to the projection
vertex:

(R.id, π.id) ∈ Estrong (16)

and each projected attribute r is connected by weak edges with π:

(r, π) ∈ Eweak (17)

Next we define edges connecting update vertices. A vertex Map(U) is connected
by a strong edge with R.id:

(Map(U), R.id) ∈ Estrong (18)

and by weak edges with all modified attributes:

∀i=1,...,j(Map(U), R.ri) ∈ Eweak (19)

This ends the definition of the dependency graphs and an example of such graph
is shown on Figure 3.

6.2 Helpful Methods

The presented construction relies on drivers of underlying storages, and we re-
quire them to implement addPrimary(U, π) and add(U, π) methods, which add
a new tuple to π. The addPrimary method generates and returns the primary
key of a new tuple, while add takes the primary key as an argument in values
of U . We also make use of modify and delete methods, which change a single
tuple. These methods can be easily implemented for every storage engine.

Next we define Proj(U) function that returns projections affected by U .
These are projections π, such that there exists a relation attribute r such that:

{(Map(U), r), (r, π)} ⊂ Estrong ∪ Eweak (20)

Additionally, for each update U we define a Prim(U), which specifies a projec-
tion where data changes are at first applied.

342 P. Leszczyński, K. Stencel

idaddress name buyer book price id title nb_of_items price id parentid

ADD USER BUY A BOOK ADD A NEW BOOK

CF:BOOKKV:USER RD: SOLD RD: BOOK

namecategory

KV:COUNT

ADD A CATEGORY

KV:CAT

Fig. 3. Graph example from a bookstore application. The upper vertices represent
update operations. The middle ones correspond to relation attributes of relations: user,
sold items, book and category. The lower ones are vertices of the underlying storages,
which will be described in section 6.4.

Let Find(U, π) denote a function that identifies tuples modified by an update
U in a projection π. For each projected attribute in π, we focus on its trace, which
is a sequence of foreign key attributes and determines how the attribute has been
projected. We examine the set of traces of projection attributes in π. Each trace
corresponds to a single tuple modified by U and the algorithm constructs a
strong path (i.e. a path composed of strong edges) from an update vertex to a
projection one. When traversing the path, it collects visited attributes’ values
and, as a result, retrieves the primary key of the modified tuple at the end.
In general Find(U, π) returns pairs containing the primary key of a modified
tuple and a strong path used to determine it. Additionally we define A(U, π, p)
method which given an update U , a projection π and a strong path p, evaluates
a trace corresponding to p and returns projection attributes that are projected
according to the evaluated trace.

The algorithm also uses a Join(p) function that, given a strong path between
the update and projection vertex, returns 0 if the path corresponds to a simple
projection without join statements or 1 in the opposite case. As the last, we will
make use of Mod method. The method, given a tuple in the projection, modifies
it according to the values of an update. It uses a strong path to determine how
an update changes the values.

6.3 The Main Algorithm

In this section, we describe a construction of the algorithm:

1. If type of U is add, then apply addPrimary(U,Prim(U)) and append its
result to values of U as a primary key of the new tuple.

2. Let us define a set of projections T that are going to be updated. If type of
U is add then T = Proj(U) \ Prim(U), in other case let T = Proj(U).

3. For each π ∈ T :
3.1 For each (tupleId, p) ∈ Find(U, π):

3.1.1 Let V alp = {(ri, valueri) : ri ∈ A(U, π, p) ∧ (ri, valueri) ∈ V al}

Update Propagator for Joint Scalable Storage 343

3.1.2 If Join(p) = 0, then apply add(U, valueid), delete(U, valueid) or
modify(π, valueid, V alp) according to the given update type of U .

3.1.3 If Join(p) = 1, then apply Mod(V alp, π, p, tupleId).

First, the algorithm checks a type of a given update U . If a new tuple is
going to be inserted, it is first added to the primary projection of the updated
relation where a new tuple gets the primary key. In step 2, the algorithm finds
all projections that have been affected by U . When type of U is add, then the
primary projection of the modified relation is excluded since the new tuple has
already been added there in step 1. In steps 3 and 3.1, we iterate through all
modified projections and all modified tuples in each projection. Modified tuples
are represented as elements of Find(U, π) which contain the primary key of
the modified tuple and a strong path corresponding to the trace of modified
attributes.

Step 3.1.2 describes the simple case when the algorithm fills underlying stor-
ages with modified values. This happens when π contains a subset of attributes
of relation R which is modified by U , and the algorithm runs the requested
operation on a tuple in underlying storage. Step 3.1.3 applies data changes on
tuples, that via one-to-many joins, contain data affected by U . The changes are
applied by the Mod method.

6.4 A Dependency Graph Example

Figure 3 shows the dependency graph for the presented bookstore example. Sup-
pose KV:USER represents a key-value storage where user data is stored. Then
RD:SOLD and RD:BOOK vertices represent relational databases. In the first
one, financial data is stored, while the second contains some book information
including number of items in stock, which has to be modified in a transactional
way. CF:BOOK is a column-family storage containing additional book data and
CF:CAT contains category tuples. Suppose KV:COUNT is a key value storage
that contains: the number of books that have a category attribute equal the pri-
mary key of this category, and an amount of books assigned to its children nodes.
These are not the counters of items in the subtree, and rather a direct number
of occurrences of a given category attribute in book relation. We assume each
value contains the category’s primary key, a number of books in this category
and in its children nodes.

As an usage example, let us suppose, someone buys a book. At first, a new
tuple is added into RD:SOLD in a transactional manner. Then the data propa-
gator algorithm is run to update data in other data sources. Additionally, a tuple
in RD:BOOK needs to be modified, since there exist an attribute such that an
update vertex connects it and it connects a RD:BOOK vertex. The algorithm
evaluates the tuple that needs to be modified: it is identified by the primary key
equal book attribute from an update. Then, it increments the number of sold
books in a tuple.

The interesting example is when a new book is added, and the category
counter has to be recomputed. New tuples in RD:BOOK and CF:BOOK are

344 P. Leszczyński, K. Stencel

added. The KV:COUNT projection also needs to be modified. The algorithm
encounters two traces and constructs the strong paths corresponding to them.
The first one is the following sequence of vertices:

(Map(U), book.id, book.category, category.id, π) (21)

where Map(U) represents the update vertex, that adds a new book, and π is
the KV:COUNT vertex. The second one is very similar, however it goes once
through the cycle between id and parent attribute in a category relation:

(Map(U), book.id, book.category, category.id, category.parent, category.id, π)
(22)

Having two paths, the algorithm travels through them and collects the attribute
values and, as a result, recovers two primary keys of the tuples in KV:COUNT. In
the first case, the primary key equals value of a category attribute. In the latter,
when reaching parent attribute in a category relation, the algorithm queries
the KV:CAT to retrieve a parent value, which is the primary key. Having the
primary keys, the algorithm increments counters in both tuples: in the first case
we increment the number of books in the given category, while in the latter we
increment the number of books assigned to children nodes. This can be done
due to traces of projection attributes.

7 Conclusion

The performance of the presented system relies on mapping different update
operations into the same update vertex, thus we can precompute the steps of the
algorithm for each update type. This is especially efficient for web applications,
since users perform the same actions on the site, and similar database queries
are run. As the number of different update types can grow exponentially, with
the number of attributes, the implementation of the algorithm can be optimized
to precompute an update of each attribute separately. The update propagation
mechanism is scalable since the graph size does not depend on data size.

We have recently finished an implementation of the algorithm and we are
preparing benchmarks to assess the overhead introduced by the propagation
system. The presented mechanism is stateless. It can be set up on several servers
and it does not introduce a new bottleneck in the system.

According to the CAP theorem [3], there exists a trade-off between consis-
tency and availability. Some storages like relational databases provide ACID
properties but do not scale well. The other example are possibly inconsistent
NoSQL storages that provide high availability of the storage. We believe that
our system allows tuning the trade-off in a better way. With our model, a storage
can be easily split into smaller modules and each of them can be provided with
a custom solution.

Creating a scalable database storage is a valid research problem. We have
focused on web applications which gave us additional assumptions about data
model. The read and update operations are known in advance, and data accesses

Update Propagator for Joint Scalable Storage 345

are read dominant. Several consistency levels are needed in different contexts.
We believe that these assumptions lead to a better trade-off.

We have presented the scalable joint storage system which is based on several
underlying storages, and propagates updates to keep all data copies consistent
with each other. We have shown the architecture and described basic implemen-
tation assumptions of the constructed model. The update propagator algorithm
has been described in details. The idea of the joint storage based on the under-
lying storages allows to take advantages of different architecture that suit best
a specific data.

We believe that it allows building a scalable web application at the lower
cost, because it eliminates the risk of programming faults affecting the data
consistency that are difficult to fix and detect.

References

1. D. Agrawal, A. E. Abbadi, S. Antony, and S. Das. Data management challenges
in cloud computing infrastructures. In S. Kikuchi, S. Sachdeva, and S. Bhalla,
editors, DNIS, volume 5999 of Lecture Notes in Computer Science, pages 1–10.
Springer, 2010.

2. D. D. Arun Iyengar, James R. Challenger and P. Dantzig. High-performance web
site design techniques. IEEE Internet Computing, 4:17–26, 2000.

3. E. A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, PODC
’00, pages 7–, New York, NY, USA, 2000. ACM.

4. Cassandra. http://cassandra.apache.org/, Jan. 2011.
5. J. R. Challenger, P. Dantzig, A. Iyengar, M. S. Squillante, and L. Zhang. Efficiently

serving dynamic data at highly accessed web sites. IEEE/ACM Trans. Netw.,
12:233–246, April 2004.

6. J. R. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently
caching dynamic web data. 1999.

7. C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and A. Toma-
sic. Scalable consistency management for web database caches. computer science.
Technical report, 2006.

8. C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and A. Toma-
sic. Scalable query result caching for web applications. Proc. VLDB Endow.,
1:550–561, August 2008.

9. D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and F. Pfaffhauser.
Cloudy: A modular cloud storage system. PVLDB, 3(2):1533–1536, 2010.

10. T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency rationing in
the cloud: Pay only when it matters. PVLDB, 2(1):253–264, 2009.

11. Lucene. http://lucene.apache.org, Jan. 2011.
12. A. Manjhi, P. B. Gibbons, A. Ailamaki, C. Garrod, B. M. Maggs, T. Mowry,

C. Olston, A. Tomasic, and H. Yu. Invalidation clues for database scalability
services. Technical report, In Proceedings of the 23 rd International Conference
on Data Engineering, 2006.

13. MemcacheDB. http://memcachedb.org/, Jan. 2011.
14. Redis. http://code.google.com/p/redis/, Jan. 2011.
15. Sphinx. http://sphinxsearch.com, Jan. 2011.
16. Thrift. http://thrift.apache.org/, Jan. 2011.

