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Abstract. This contribution presents the decidability results for the
formalism of Elementary Object Systems (Eos). Object nets are Petri
nets which have Petri nets as tokens – an approach known as the nets-
within-nets paradigm.
In this paper we study the relationship of the reachability and the liveness
problem. We prove that both problems are undecidable for Eos (even
for the subclass of conservative Eos) while it is well known that both
are decidable for classical p/t nets. Despite these undecidability results,
boundedness can be decided for conservative Eos using a monotonicity
argument similar to that for p/t nets.
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1 Introduction

Object Systems are Petri nets which have Petri nets as tokens – an approach
which is called the nets-within-nets paradigm, proposed by [1] for a two levelled
structure and generalised in [2] nesting structures. The Petri nets that are used as
tokens are called net-tokens. Net-tokens are tokens with internal structure and
inner activity. This is different from place refinement, since tokens are trans-
ported while a place refinement is static. Net-tokens are some kind of dynamic
refinement of states. The algebraic extension of objects nets – discussed in [3] –
even allows operations on the net-tokens, like sequential or parallel composition.
This is a concise way to express the self-modification of net-tokens at run-time
in an algebraic setting.

It is quite natural to use object nets to model mobility and mobile agents
(cf. [4]). Each place of the system net describes a location that hosts agents,
which are net-tokens. Mobility can be modelled by moving the net-token from
one place to another. This hierarchy forms a useful abstraction of the system:
on a high level the agent system and on a lower level of the hierarchy the agent
itself.

Approaches related to object nets are minimal object nets [5], nested nets
[6], hypernets [7], AHO systems [8], adaptive workflow nets [9], and ν-Abstract
Petri nets [10].
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In this paper we study decidability of the reachability and the liveness prob-
lem for Eos. There are some articles considering decidability questions of ex-
tended net-formalisms: In [5] it is shown that reachability is undecidable for
Petri nets that can arbitrarily create fresh object identities. Similar results are
given in [10]. Note that Eos do not have identities, so these results do not carry
over to Eos. Decidability questions concerning object nets with coloured tokens,
called nested nets, are studied in [6].

The paper has the following structure: Section 2 defines elementary object
systems (Eos). Section 3 studies decidability problems for Eos, namely: reach-
ability, liveness and boundedness. Section 4 studies the same problems for Con-
servative Eos which are restricted in a way that object nets are copied or fused
but never created or destroyed. It will turn out that this restriction regains the
monotonicity of the firing rule which is lost in the general case. The paper ends
with an overview of the results obtained.

2 Elementary Object Systems

In the following we use standard notations for multisets and p/t nets. A multiset
m on the set D is a mapping m : D → N. On multisets we have the usual
operations like cardinality |m|, partial ordering: m1 ≤ m2, addition: m1 +m2,
etc. which are all defined pointwise. The set of all finite multisets over the set D
is denoted MS (D).

A p/t net N is a tuple N = (P, T,pre,post), such that P is a set of places,
T is a set of transitions, with P ∩ T = ∅, and pre,post : T → MS (P ) are
the pre- and post-condition functions. A marking of N is a multiset of places:
m ∈ MS (P ).

An elementary object system (Eos) is composed of a system net, which is

a p/t net N̂ = (P̂ , T̂ ,pre,post) and a set of object nets N = {N1, . . . , Nn},
which are p/t nets given as N = (PN , TN ,preN ,postN ). In extension we assume
that all sets of nodes (places and transitions) are pairwise disjoint. Moreover we

assume N̂ 6∈ N . We assume the existence of the object net • ∈ N which has
no places and no transitions and is used to model anonymous, so called black
tokens.

The system net places are typed by the mapping d : P̂ → N with the
meaning, that the place p̂ of the system net contains net-tokens of the object
net type N if d(p̂) = N . No place of the system net is mapped to the system net

itself since N̂ 6∈ N .

Since the tokens of an Eos are instances of object nets a marking µ ∈ M of
an Eos OS is a nested multiset.

A marking of an Eos OS is denoted µ =
∑|µ|

k=1(p̂k,Mk), where p̂k is a place
in the system net and Mk is the marking of the net-token of type d(p̂k). To

emphasise the nesting, markings are also denoted as µ =
∑|µ|

k=1 p̂k[Mk]. Tokens
of the form p̂[0] and d(p̂) = • are abbreviated as p̂[].



324 M. Köhler-Bußmeier and F. Heitmann

The set of all markings which are syntactically consistent with the typing d
is denoted M (Here d−1(N) ⊆ P̂ is the set of system net places of the type N):

M := MS
(⋃

N∈N
(
d−1(N)×MS (PN )

))
(1)

The partial order v on nested multisets is: µ1 v µ2 iff ∃µ : µ2 = µ1 + µ.
Analogously to markings, which are nested multisets µ, the events of an Eos

are also nested. An Eos allows three different kinds of events (cf. the following
Eos).

1. System-autonomous: The system net transition t fires autonomously which
moves the net-token from p1 to p2.

2. Object-autonomous: The object net fires transition t1 moving the black token
from q1 to q2. The object net itself remains at its location p1.

3. Synchronisation: The system net transition t fires synchronously with t1
in the object-net. Whenever synchronisation is demanded then autonomous
actions are forbidden.

These three kinds of events can be described in a uniform way, namely as
synchronisations: t̂[ϑ], where t̂ is the transition that fires in the system net and
ϑ(N) is a multiset of its transitions, which have to fire synchronously with t̂, i.e.
ϑ(N) ∈ MS (TN ) for each object net N ∈ N .1

Obviously system-autonomous events are a special case of synchronous events,
where ϑ(N) = 0 for all object nets N . To describe object-autonomous events

we assume the set {id p̂ | p̂ ∈ P̂} of idle transitions to be included in the set of

system net transitions T̂ , where id p̂ formalises object-autonomous firing on the
place p̂:

1. Each idle transitions id p̂ has p̂ as its side condition: pre(id p̂) = post(id p̂) :=
p̂.

2. Each idle transition id p̂ synchronises only with one transition fromN = d(p̂):

∀τ̂ [ϑ] ∈ Θ : τ̂ = id p̂ =⇒ ∀N ∈ N : |ϑ(N)| ≤ 1 ∧
(ϑ(N) 6= 0 ⇐⇒ N = d(p̂))

(2)

With these idle transitions all three kinds of events are described as a synchro-
nisation event τ̂ [ϑ], where τ̂ is either a “real” transition t̂ or id p̂ for some p̂.

1 In the graphical representation the events are generated by transition inscriptions.
For each object net N ∈ N a system net transition t̂ is labelled with a multiset of
channels l̂(t̂)(N) = ch1+· · ·+chn which is depicted as 〈N :ch1, N :ch2, . . .〉. Similarily,
an object net transition t may be labelled with a channel lN (t) = ch – depicted as
〈:ch〉 whenever there is such a label. We obtain an event t̂[ϑ] by setting ϑ(N) :=
t1+· · ·+tn to be any transition multiset such that labels match: lN (t1)+· · ·+lN (tn) =

l̂(t̂)(N).
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Definition 1 (EOS). An elementary object system OS = (N̂ ,N , d, Θ, µ) is a
tuple such that:

1. N̂ is a p/t net, called the system net.

2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.

4. Θ is the set of events.

5. µ0 ∈ M is the initial marking.

An Eos is conservative iff so is its typing d. A typing is called conservative
iff for each place in the preset of a system net transition t̂ there is place in the
postset being of equal type (except for the type •): (d(•t̂)∪{•}) ⊆ (d(t̂•)∪{•}).

Firing Rule Let µ be a marking of an Eos. The projection Π1 on the first
component abstracts away the substructure of all net-tokens:

Π1

(∑|µ|
k=1

p̂k[Mk]

)
:=

∑|µ|
k=1

p̂k (3)

The projection Π2
N on the second component is the abstract marking of all

net-tokens of the type N ∈ N ignoring their local distribution within the system
net.

Π2
N

(∑|µ|
k=1

p̂k[Mk]

)
:=

∑|µ|
k=1

1N (p̂k) ·Mk (4)

where the indicator function 1N : P̂ → {0, 1} is 1N (p̂) = 1 iff d(p̂) = N . Note
that Π2

N (µ) results in a marking of the object net N .

A system event τ̂ [ϑ] removes net-tokens together with their individual inter-
nal markings. Firing the event replaces a nested multiset λ ∈ M that is part
of the current marking µ, i.e. λ v µ, by the nested multiset ρ. Therefore the
successor marking is µ′ := (µ − λ) + ρ. The enabling condition is expressed by
the enabling predicate φOS (or just φ whenever OS is clear from the context):

φ(τ̂ [ϑ], λ, ρ) ⇐⇒ Π1(λ) = pre(τ̂) ∧Π1(ρ) = post(τ̂) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (ϑ(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)− preN (ϑ(N)) + postN (ϑ(N))

(5)

With M̂ = Π1(λ) and M̂ ′ = Π1(ρ) as well as MN = Π2
N (λ) and M ′

N =
Π2

N (ρ) for all N ∈ N the predicate φ has the following meaning:

1. The first conjunct expresses that the system net multiset M̂ corresponds to
the pre-condition of the system net transition t̂, i.e. M̂ = pre(t̂).

2. In turn, a multiset M̂ ′ is produced, that corresponds with the post-set of t̂.

3. An object net transition τN is enabled if the combinationMN of the markings
net-tokens of type N enable it, i.e. MN ≥ preN (ϑ(N)).
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4. The firing of τ̂ [ϑ] must also obey the object marking distribution condition
which is essential for the formulation of linear invariants: M ′

N = MN −
preN (ϑ(N))+postN (ϑ(N)), where postN (ϑ(N))−preN (ϑ(N)) is the effect
of the object net’s transition on the net-tokens.

Note that (1) and (2) assures that only net-tokens relevant for the firing are
included in λ and ρ. Conditions (3) and (4) allows for additional tokens in the
net-tokens.

For system-autonomous events t̂[ϑid ] the enabling predicate φ can be sim-
plified further. We have preN (idN ) = postN (idN ) = 0. This ensures Π2

N (λ) =
Π2

N (ρ), i.e. the sum of markings in the copies of a net-token is preserved w.r.t.
each type N . This condition ensures the existence of linear invariance properties
(cf. [11]).

Analogously, for an object-autonomous event we have an idle-transition τ̂ =
id p̂ for the system net and the first and the second conjunct is:Π1(λ) = pre(t̂) =

p̂ = post(t̂) = Π1(ρ). So, there is an addend λ = p̂[M ] in µ with d(p̂) = N and
M enables tN := ϑ(N).

Definition 2 (Firing Rule). Let OS be an Eos and µ, µ′ ∈ M markings. The
event τ̂ [ϑ] is enabled in µ for the mode (λ, ρ) ∈ M2 iff λ v µ∧φ(τ̂ [ϑ], λ, ρ) holds.

An event τ̂ [ϑ] that is enabled in µ for the mode (λ, ρ) can fire: µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′.

The resulting successor marking is defined as µ′ = µ− λ+ ρ.

We write µ
τ̂ [ϑ]−−→
OS

µ′ whenever µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′ for some mode (λ, ρ).

Note that the firing rule has no a-priori decision how to distribute the marking
on the generated net-tokens. Therefore we need the mode (λ, ρ) to formulate the
firing of τ̂ [ϑ] in a functional way.

As for p/t nets the firing rule has nice properties (cf. [11] for details):

– Firing is reversible, i.e. for each Eos OS we obtain OS rev by inverting the

arcs and have µ1
θ−−→

OS
µ2 ⇐⇒ µ2

θrev

−−−−→
OSrev

µ1.

– The behaviour of the system net in the Eos when ignoring the net-tokens
structure cannot be distinguished from the system net N̂ as a p/t net, i.e.

µ
t̂[ϑ]−−→
OS

µ′ =⇒ Π1(µ)
t̂−→̂
N

Π1(µ′).

– The invariance calculus for p/t nets can be extended to Eos in a compo-
sitional way, i.e. invariance equations can be obtained from the invariance
equations of the constituting components separately.

3 Decidability Problems for EOS

The interesting part in the firing rule of Eos is the fact that moving an object
net-token in the system net has the power to modify the state of an unbounded
number of tokens, i.e. all the tokens of the object net-tokens (including the case
of zero tokens). It is therefore a natural question whether this increases the
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expressiveness of Eos compared to p/t nets. Here we consider the most well
known decidability problems for Petri nets: The reachability, the liveness and
the boundedness problem.

In the following we give a direct Eos-simulation of inhibitor nets.

Proposition 1. For each inhibitor net N∗ there is an simulating Eos OS strong(N
∗).

Proof. We show that each inhibitor net can be simulated by theEosOS strong(N
∗).

Without loss of generality we consider inhibitor nets without arc weights and
we assume that for each transition we have that whenever a place p is con-
nected via a inhibitor arc then this place is not connected with t via a normal
arc. Let us consider a inhibitor net given as N∗ = (P ∗, T ∗, F ∗, F ∗

inh ,m0), where
F ∗
inh ⊆ P ∗ × T ∗ describes the inhibitor arcs. A transition t is enabled in m iff

there is at least one token on each input place and all inhibitor place carry the
empty marking, i.e. m(p) ≥ F (p, t) for all p and m(p) = 0 for all p such that
(p, t) ∈ F ∗

inh .

Fig. 1. The Eos-translation of inhibitor nets

Each marking m of the inhibitor net is encoded as the marking µ(m) of the
Eos. We say that a nested marking µ encodes a marking m of N∗ whenever
µ contains exactly one net-token on each place p ∈ P ∗ (and none on the other
places) and the net-token on p has exactly m(p) tokens on its place cnt:

µ(m) := run[] +
∑

p∈P∗
p[m(p) · cntd(p)]

Each firingm
t−→ m′ is simulated deterministically by the firing µ(m)

t1t2−−→ µ(m′).
The simulating Eos OS strong(N

∗) = (N̂ ,N , d, Θ, µ0) is constructed in the
following way:

– For each place p ∈ P ∗ in the inhibitor net the simulating Eos has one object-
net N(p). Each object-net N(p) has exactly one place cntN(p) and the two
transitions iN(p) and dN(p), where iN(p) is labelled with channel incN(p) and
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dN(p) is labelled with channel decN(p). In particular, all the object nets N(p)
have the same net structure. Additionally we have the object-net •:

N = {•} ∪ {N(p) | p ∈ P ∗}

– The system net N̂ is obtained from the inhibitor N∗ via a substitution for
each transition which is illustrated in Figure 1:
Each transition t ∈ T ∗ is replaced by the two transitions t1 and t2.

T̂ := {t1, t2 | t ∈ T ∗}

For each input arc (p, t) ∈ F ∗ ∩ (P ∗ × T ∗) we add the place (p, t); for each
output arc (t, p′) ∈ F ∗∩ (T ∗×P ∗) we add the place (t, p′); for each inhibitor
arc (pi, t) ∈ F ∗

inh we add the place (pi, t). Additionally, we have one global
run place which guarantees that firing of t1 must be followed by t2 before
any other transition can fire.

P̂ := P ∗ ∪ F ∗ ∪ F ∗
inh ∪ {run}

For each input arc (p, t) the transition t1 is labelled with decN(p):

l̂(t1)(N(p)) =

{
decN(p), if (p, t) ∈ F ∗ ∩ (P ∗ × T ∗)
0, otherwise

Analogously, for each output arc (t, p′) the transition t2 is labelled with
incN(p′).

– The typing d is defined as:

d(p) = N(p) d(p, t) = N(p) d(t, p′) = N(p′) d(pi, t) = d(run) = •

– The initial marking is defined as the encoding of m, i.e. µ0 := µ(m0).

Whenever a place pi is connected via a inhibitor arc with t then t1 has exactly
one place of type N(pi) in its preset but none in the postset. Therefore t1 can
only fire if the marking of the net-token is the empty multiset. Whenever t2 fires
it generates one net-token on pi again which must be empty since there is no
place of type N(pi) in the preset of t2. It is straightforward to see that we have:

m
t−→ m′ ⇐⇒ µ(m)

t1t2−−→ µ(m′)

This proves that the Eos OS strong(N
∗) simulates the inhibitor net N∗. ¤

We define the liveness problem for Eos analogously to that of p/t nets: For
the liveness problem one has to decide whether all events θ ∈ Θ of a given Eos
OS are live. An event θ is live if for all markings µ reachable from µ0 there exists
a marking µ′ reachable from µ that enables θ.

Proposition 2. Reachability is reducible to liveness for Eos.
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Proof. The proof follows the idea given in [12] that shows the equivalence of
reachability and liveness for p/t nets.

It is sufficient to consider the problem whether the empty marking is reach-
able since for each inhibitor netN1 and each markingm we can construct another
inhibitor net N2 with the property: The marking m is reachable in N1 iff 0 is
reachable in N2. The net N2 is obtained from N1 by adding one place run and
one transition t. The additional run-place is attached as a side condition to each
transition of N1. Initially the place run is marked with one token. The addi-
tional transition t removes exactly m(p) tokens from each p (where m is the
given marking tested for reachability) and one token from run. The postset of t
is empty. It is obvious that N2 has the desired property.

We will construct an Eos OS (N∗) from a given p/t net N∗ such that the
empty marking is reachable in N∗ iff the event t0[ϑ] is not live in OS (N∗).

Assume the inhibitor net is given as N∗ = (P ∗, T ∗, F ∗, F ∗
inh ,m0). We define

OS (N∗) almost the same as in Prop. 1. We add transition t0 and the place
run2 and for each p ∈ P ∗ the place p′ and the transitions t(p) and t′(p). We set
d(run2) := • and d(p′) := d(p) = N(p). Remark: Since t0 has only places of the
black token type in the pre- and postset (i.e. N (t0) = {•}) we obtain that if the
event t0[ϑ] is activated then ϑ is uniquely determined as ϑ(N) = 0 holds for all
N ∈ N (t0).

As before, we define µ(m) as: µ(m) := run[] +
∑

p∈P∗ p[m(p) · cntd(p)]
A marking that is reachable in N∗ is so in OS (N∗): Assume that 0 is reach-

able in N∗. In µ(0) we have µ(0)
t0[ϑ]−−−→ µ := run2[] +

∑
p∈P∗ p[0] and in µ no

event is activated anymore. So, if 0 is reachable in N∗ then clearly t0[ϑ] is not
live.

Assume that 0 is not reachable in N∗. Then t0[ϑ] is live: For each marking

m∗ 6= 0 we have m∗(p0) > 0 for some p0 and therefore we have µ(m∗)
t0[ϑ]−−−→

µ′ t(p0)[ϑ
′]t′(p0)[ϑ

′′]−−−−−−−−−−−→ µ(m∗). Note that t(p0)[ϑ
′]t′(p0)[ϑ′′] does not alter the mark-

ing of the net-token on p. ¤

It is well known that reachability, liveness and boundedness, are undecidable
for inhibitor nets. Therefore, we obtain the following result.

Corollary 1. Reachability, liveness and boundedness, are undecidable for Eos.
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4 Decidability Results for Conservative EOS

The expressiveness of Eos was due to a non-conservative typing. Recall, that
a typing d is called conservative if for all t we have that for each place p̂ in its
preset there is a place p̂′ in its postset typed with the same net, i.e. d(p̂) = d(p̂′).

It will turn out that the blocking behaviour is somehow the only source of
the equivalence of Eos to inhibitor nets. If we consider conservative Eos, we
will regain the monotonicity property of the firing rule, which is essential for the
construction of coverability graphs.

Theorem 1. Boundedness and Coverability are decidable for conservative Eos.

Proof. In [11] we have shown that the reachability graph of a conservative Eos
is a well structured transitions system [13]. Generalising the result of Karp and
Miller it is shown in [13] that the boundedness and the coverability problem are
decidable for well structured transitions system. ¤

In the following we show that reachability and liveness remain undecidable
even if we restrict Eos to conservative typings.2 We can reuse the translation
of an inhibitor net in Prop. 1. The simulation provided for conservative Eos is
a very weak one, in the sense that the simulation might make wrong guesses
about the test on zero, but all misguesses are stored in the marking till the end.
Nevertheless for each firing sequence m

∗−→ m′ in the inhibitor net there is one
corresponding sequence µ̃(m)

∗−→ µ̃(m′) in the simulating Eos. Additionally we

have the property that for each firing µ̃(m)
∗−→ µ such that µ does not correspond

to any marking in the inhibitor net then no marking reachable from µ ever will
do so.

Proposition 3. For each inhibitor net N∗ there is a conservative Eos OS (N∗)
that has the following property:

m
∗−−→

N∗
m′ ⇐⇒ µ̃(m)

∗−−−−−→
OS (N∗)

µ̃(m′)

Proof. Let us consider a inhibitor net given as N∗ = (P ∗, T ∗, F ∗, F ∗
inh ,m0),

where F ∗
inh ⊆ P ∗×T ∗ describes the inhibitor arcs. The simulating Eos OS (N∗)

is obtained by minor modifications from the Eos OS strong(N
∗) from Prop. 1

2 For reachability this result has already been shown in [14], where we have given a
weak simulation of counter programs. But the simulation of inhibitor nets given here
results in a representation that is more accessible to the liveness problem.
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We say that a nested marking µ̃ encodes a marking m of N∗ whenever µ̃ con-
tains exactly one empty net-token on each control place and each empty place:
µ̃(m) := µ(m) + control(p)[0] + empty(p)[0]. The initial marking is µ̃0 := µ̃(m0).
By construction, the simulating Eos OS (N∗) is conservative.

So, we have that all the net-tokens on control-places have the empty marking
if and only if all guesses on the emptiness of inhibitor places have been right
during the simulation: When all guesses have been right during the simulation
then the resulting marking perfectly reflects the marking m. But after the first
wrong guess we never reach a marking µ̃ such that it is a configuration marking
µ̃(m) for some m since we can never get rid of the tokens in the net-token on
the places control(p). ¤

The reduction from the reachability problem to the liveness problem is also
possible for conservative Eos.

Proposition 4. Reachability is reducible to liveness for conservative Eos.

Proof. The construction in Prop. 2, which reduces reachability to liveness, can
be adjusted to the conservative case: To each control place control(p) we add a
side transition t1 which is dead iff all all guesses habe been made right. Therefore,
the empty marking 0 is reachable in the inhibitor net N∗ iff for all p ∈ P ∗ we
have that t1[ϑ1] is not live for all ϑ1 and t0[ϑ0] is live for some ϑ0. ¤

Therefore, liveness is undecidable even for conservative Eos.

Corollary 2. Reachability and liveness are undecidable for conservative Eos.

For conservative Eos one cannot destroy or generate net-tokens. Only joining
or splitting is allowed. If we restrict conservative Eos even further and do not
allow a fusion (or splitting) of two or more net-tokens then we obtain the class
of Generalised State Machines [15]. An Eos OS is a generalised state machine
(GSM) iff for all t̂ there is either exactly one place in the preset and one in the
postset typed with the object net N (or there are no such places) and the initial
marking µ0 has at most one net-token of each type. It is shown in [15] that for
each Eos OS there exists a p/t net Rn(OS ), called the reference net, which
bi-simulates the behaviour of OS .

From a modelling point of view these results are interesting since in many
scenarios net-tokens model physical entities which are neither cloned, combined,
created nor destroyed. These models therefore have the GSM property. From
a more theoretical point of view the correspondence of each GSM OS with its
reference net Rn(OS ) allows to simplify notations considerably – at the price of
limiting the expressiveness. For these reasons some formalism, like the ones in
[1], [7], or [9], are initially restricted to generalised state machines.

We also studied the impact of bounds on markings. In [16] we have defined
four different kinds of bounds. Here we recall two notions: A marking µ is called
safe(2) (or: system-safe) iff for all reachable markings there is at most one token
on each system net place. A marking µ is called safe(3) (or simply: safe) iff for
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all reachable markings there is at most one token on each system net place and
each net-token is safe:

We have shown in [16] that safe(3) Eos have finite state spaces. We know
that problems, like reachability or liveness are therefore decidable for safe(3)
Eos, but they are at least as complex as the corresponding problem for p/t
nets. It is a known fact that most interesting questions about the behaviour
of classical 1-safe p/t nets like liveness, deadlock-freedom, and reachability are
Pspace-hard (see [17]). It turns out that polynomial space is also sufficient to
decide reachability and liveness (cf. [16] for details) so both are PSpace-complete
problems.

In general, safe(2) Eos have infinite state spaces, since the net-tokens’ mark-
ings are unbounded. If we look at the construction in Prop. 2 and in Prop. 3 we
can observe that the constructed Eos are already safe(2).

Corollary 3. Reachability and liveness are undecidable for conservative, safe(2)
Eos.

5 Conclusion

This paper studies the Petri net formalism of elementary object net systems
(Eos). Object nets are Petri nets which have Petri nets as tokens. Eos are called
elementary since the nesting is restricted to two levels only. Interestingly enough,
even for the restricted class of elementary object nets reachability, liveness, and
boundedness are undecidable problems. The following table summarises the most
relevant decidability results of this paper. (Here u denotes undecidability and
d decidability of the problem.) Even for the class of conservative Eos – where
boundedness remains decidable – the reachability and the liveness problem re-
main undecidable.

conservative system-safe and safe
Eos Eos GSM conservative Eos Eos

reachability u u d u PSpace-complete
liveness u u d u PSpace-complete
boundedness u d d d always bounded

Additionally, we studied Eos that are –in some sense– safe systems. Only
the class of safe(3) Eos has finite state spaces. The class of of safe(3) Eos is
not really simpler than the general case as reachability and the liveness are still
undecidable for them. On the other hand the LTL/CTL model checking problem
for safe(3) Eos is as complex as the corresponding problem for p/t nets which
implies that reachability and liveness are PSpace-hard problems.
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15. Köhler, M., Rölke, H.: Reference and value semantics are equivalent for ordinary
Object Petri Nets. In Darondeau, P., Ciardo, G., eds.: PETRI NETS 2005. Volume
3536 of LNCS, Springer (2005) 309–328
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