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Poznań Supercomputing and Networking Center
Noskowskiego 12/14, 61–704 Poznań, Poland
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Abstract. We show that the equational theories of ∗–continuous Kleene
algebras, Kleene lattices, action algebras and action lattices have the fi-
nite model property (FMP). We present an uniform framework for prov-
ing this property for all these theories. We use the method of nuclei and
quasi-embedding in the style of [14, 1], but we expand it to the infinitary
Gentzen-style sequent calculi for these theories [3].
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1 Introduction

One of the oldest and the most general logic of programs is the theory of
Kleene algebras. The equational fragment of this theory was first studied by
S. C. Kleene in the fifties of the last century under the name of the algebra
of regular events or the algebra of regular sets [9]. Today we call the algebra
studied by S. C. Kleene the algebra of regular languages, and we know that this
algebra has no finite equational characteristic [18, 5]. Moreover we know the very
smart quasi–axiomatization of Kleene algebras, and we know that the equational
consequences of these axioms are exactly the identities of the algebra of regular
languages (hence the regular expression equations). This is the famous result
of D. Kozen from the early nineties [11] (we refer to his paper also for a brief
history of those forty years of research on this topic).

By another result of D. Kozen [10], we know that exactly the same equations
are satisfied by the algebra of binary relations. So Kleene algebras are good
algebraic framework to reason about programs as well. Like in Propositional
Dynamic Logic [6], 0 is interpreted as abort, 1 is interpreted as skip, a ∨ b
means ,,nondeterministically run a or b”, a · b means ,,sequentially run a and b”,
and a∗ means ,,repeat a a nondeterministically chosen number of times”.

Let us recall the formal definition of Kleene algebras. An algebra A =
(A,∨, ·, ∗, 0, 1) is a Kleene algebra if the reduct (A,∨, 0) is a lower–bounded
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join–semilattice, the reduct (A, ·, 1) is a monoid, · distributes over ∨ on the both
sides: a · (b ∨ c) = (a · b) ∨ (a · c) and (b ∨ c) · a = (b · a) ∨ (c · a), 0 is two sided
annihilator for ·: a · 0 = 0 = 0 · a, and the operation ∗ satisfies the following
conditions:1

1 ∨ a · a∗ ≤ a∗, 1 ∨ a∗ · a ≤ a∗,

a · b ≤ b ⇒ a∗ · b ≤ b, b · a ≤ b ⇒ b · a∗ ≤ b.

As usual a partial order relation ≤ on A is defined by: a ≤ b ⇔ a ∨ b = b.
Shortly after the result of D. Kozen, V. Pratt showed that the regular ex-

pression equations are finitely equationally axiomatizable, but over an expanded
signature [17]. He augmented the operators of Kleene algebras with two residuals
for ·, i.e. binary operators � and � satisfying the residuation law:

b ≤ a� c ⇔ a · b ≤ c ⇔ a ≤ c� b.

We refer to this famous paper of V. Pratt for this equational characteristic.
In this paper he also called the developed algebra an action algebra and the
equational theory of this algebra action logic. So in action logic one can reason
about programs in a purely equational way.

It is natural to supplement Kleene algebras and action algebras with the
meet operator ∧ so that the reduct (A,∧,∨) would be a lattice. We refer to the
papers of D. Kozen [12] and P. Jipsen [8] for motivations of such extensions,
mainly associated with the formation of matrices and the test operator. Similar
to Kleene algebras and action algebras, Kleene lattices and actions lattices form
respectively a quasi–variety and a variety.

We will denote the above–listed classes of algebras by: KA (Kleene algebras),
KL (Kleene lattices), AA (action algebras) and AL (action lattices), and their
equational theories respectively by Eq(KA), Eq(KL), Eq(AA) and Eq(AL).

The Kleene star operator ∗ in the standard Kleene algebras, i.e. the algebra
of regular languages and the algebra of binary relations (which nota bene have
naturally defined residuals and meet), has some essential infinitary property:

a · b∗ · c = sup
n∈ω

a · bn · c,

where b0 = 1 and bn+1 = b ·bn. This property is called the ∗–continuity condition
and it can be captured by the following infinitary quasi–equation:∧

n∈ω
a · bn · c ≤ d ⇒ a · b∗ · c ≤ d,

and the infinitely many equations: a · bn · c ≤ a · b∗ · c, for each n ∈ ω [13].
We will denote the classes of ∗–continuous algebras with the superscript ∗

and their equational theories in the similar manner, i.e.: by Eq(KA∗), Eq(KL∗),
Eq(AA∗) and Eq(AL∗).

1 We accept a convention assigning ∗ the highest priority, then ·, and at the end ∨.
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2 State of the Art

By the FMP of the equational theory of some class of algebras we mean that if
some equality fails in some member of this class it also fails in some finite member
of this class. From this property it follows immediately that such theory is Π0

1 ,
i.e. co–recursively enumerable. Clearly, when a theory has a finite axiomatization
it is Σ0

1 , i.e. recursively enumerable, and when it is Π0
1 and Σ0

1 it is decidable.
The table below shows what is currently known about the FMP and decid-

ability of the equational theories from the previous section. Moreover it shows
which theories coincide and which differ. Clearly, Eq(C) ⊆ Eq(C∗) for all C ∈
{KA, KL, AA, AL}.

theory is decidable has the FMP

Eq(KA)
= YES YES

Eq(KA∗)

Eq(KL) ? ?
?

Eq(KL∗) ? ?

Eq(AA) ? NO
6=

Eq(AA∗) NO YES

Eq(AL) ? NO
6=

Eq(AL∗) NO YES

The identity of Eq(KA) and Eq(KA∗) follows from the completeness theorem
of D. Kozen [11]. Straightforwardly from this theorem it follows that these theo-
ries are PSPACE–complete, since the equality problem of regular expressions is
PSPACE-complete. It is the famous result of L. J. Stockmeyer and A. R. Meyer
from the early seventies [19]. The FMP of these theories is also a consequence
of the completeness theorem of D. Kozen — one of the routine proof can be
found in [15]. There is also much more significant result which states that the
completeness theorem of D. Kozen is a consequence of the FMP of Eq(KA) in
this paper of E. Palka [15].

As we know, none of the property from the table is known for Eq(KL) and
Eq(KL∗). We also do not know whether these theories coincide. In this paper we
answer positively one question — does Eq(KL∗) has the FMP?

All of the known answers concerning Eq(AA), Eq(AA∗), Eq(AL) and Eq(AL∗)
are due W. Buszkowski [3]. W. Buszkowski reduced the total language problem
for context–free grammars to Eq(AA∗) and Eq(AL∗) — it yields the Π0

1–hardness
of these theories. Moreover, from another result of E. Palka [16] he deduced the
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Π0
1–completeness and the FMP of these theories. From these facts it immediately

follows that Eq(AA) and Eq(AL) (which clearly are Σ0
1) are strictly contained in

Eq(AA∗) and Eq(AL∗) respectively, and that they cannot have the FMP (since
every finite algebra is ∗–continuous). A summary of the results of W. Buszkowski
and E. Palka and their extensions to variants of algebras of binary relations can
be found in their joint paper [4]. Other results concerning these algebras and vari-
ants of algebras of regular languages can be found in the paper of W. Buszkowski
[2].

3 Infinitary Action Logics

Most of the above–mentioned results of W. Buszkowski and E. Palka are based
on the infinitary Gentzen–style system for Eq(AL∗) developed by W. Buszkowski
[3]. Our results are based on this system as well. Let us recall it. Atomic formulas
of this system are variables and the constants 0 and 1. Formulas are formed out
of atomic formulas by means of connectives: ∧, ∨, ·, �, � and ∗. Sequents are
expressions of the form Γ ` A, where Γ is a finite string of formulas and A is a
formula. The axioms and inference rules are as follows:

(Id) A ` A

(1R) ` 1

(0L) Γ 0 ∆ ` A

(1L)
Γ ∆ ` A
Γ 1 ∆ ` A

(∧L)
Γ A ∆ ` C

Γ A ∧B ∆ ` C
Γ B ∆ ` C

Γ A ∧B ∆ ` C

(∧R)
Γ ` A Γ ` B

Γ ` A ∧B

(∨L)
Γ A ∆ ` C Γ B ∆ ` C

Γ A ∨B ∆ ` C

(∨R)
Γ ` A

Γ ` A ∨B
Γ ` B

Γ ` A ∨B

(·L)
Γ A B ∆ ` C
Γ A ·B ∆ ` C

(·R)
Γ ` A ∆ ` B

Γ ∆ ` A ·B
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(�L)
Γ B ∆ ` C Ψ ` A
Γ Ψ A�B ∆ ` C

(�R)
A Γ ` B
Γ ` A�B

(�L)
Γ B ∆ ` C Ψ ` A
Γ B �A Ψ ∆ ` C

(�R)
Γ A ` B
Γ ` B �A

(∗L)
(Γ An ∆ ` B)n∈ω

Γ A∗ ∆ ` B

(∗R)
Γ1 ` A Γ2 ` A . . . Γn ` A

Γ1 Γ2 . . . Γn ` A∗
for each n ∈ ω

The ∗–free fragment of this system is the variant of full Lambek calculus that
is complete with respect to 0–bounded residuated lattices [7]. With the infinitary
rule (∗L) and the infinitely many finitary rules (∗R) this system is complete
with respect to Eq(AL∗) [16, 3]. Before we present our proof of completeness and
simultaneously the FMP of this system we owe an explanation of the term An.
Namely An stands for the string of n copies of A, and A0 for the empty string
ε. We will denote this system by ALω

∗ (the subscript ω is used because of the
infinitary rule (∗L)).

Similarly to W. Buszkowski [3], we use the method of nuclei and quasi-
embedding elaborated by M .Okada, K. Terui [14] and F. Belardinelli, P. Jipsen,
H. Ono [1] for full Lambek calculi, but we expand it in a different way — with-
out the usage of the ∗-elimination theorem proved in [16] by a syntactic way.
Therefore our proof is fully algebraic. Moreover our proof covers all interest-
ing fragments of this system, i.e.: the ∧–free fragment for actions algebras, the
{�,�}–free fragment for Kleene lattices and the {∧,�,�}–free fragment for
Kleene algebras. The listed fragments of this system we will denote respectively
by AAω

∗, KLω
∗ and KAω

∗. We expect that the method of W. Buszkowski can
be applied to KAω

∗ and KLω
∗ as well, but it was done only for ALω

∗ and
AAω

∗.
We have to formally define an interpretation of sequents in an arbitrary

∗–continuous Kleene/action algebra/lattice A. Homomorphisms from the free
algebra of formulas to A are called assignments in A. Every assignment f is
extended to strings of formulas by setting:

f(ε) = 1, f(A1 A2 . . . Ak) = f(A1) · f(A2) · . . . · f(Ak).

A sequent Γ ` A is said to be true in a model 〈A, f〉 if f(Γ ) ≤ f(A) in A. This
sequent is said to be true in A if it is true in 〈A, f〉 for any assignment f , and is
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said to be valid (in the class C∗) if it is true for every A (from C∗ ∈ {KA∗, KL∗,
AA∗, AL∗}). Indeed, according to this definition, all axioms are valid inequalities
and all inference rules are valid quasi–inequalities of ∗–continuous Kleene/action
algebras/lattices.

We will present an example of a formal proof of one inequality (clearly, any
formal proof of some equality a = b consists of two formal proofs of the inequal-
ities a ≤ b and b ≤ a). Let us note that the sequent ` A∗ is an axiom — it is
the rule (∗R) with 0 premises.

A ` A A ` A A ` A A ` A A ` A A ` A
——— (∗R) —————— (∗R) —————————— (∗R) · · · · · ·
A ` A∗ A A ` A∗ A A A ` A∗
———————————————————————————————— (∗L)

A A∗ ` A∗
————— (·L)
A ·A∗ ` A∗︸ ︷︷ ︸⇒ A∗

——— (1L)
1⇒ A∗
——————————————— (∨L)

1 ∨A ·A∗ ⇒ A∗
?

4 Finite Model Property

First of all we need to recall some notions and lemmas concerning the method
of nuclei and quasi–embedding [14, 1, 7].

An operator c : ℘(M) → ℘(M) over a monoid M = (M, ·, 1) is called a
nucleus if it satisfies the following conditions:

(c1) X ⊆ c(X),

(c2) X ⊆ Y ⇒ c(X) ⊆ c(Y ),

(c3) c(c(X)) ⊆ c(X),

(c4) c(X) ◦ c(Y ) ⊆ c(X ◦ Y ),

for all X,Y ⊆ M , where X ◦ Y = {x · y ∈ M : x ∈ X, y ∈ Y }. A set X ∈ ℘(M)
is closed if c(X) = X. The set of all closed subsets of M is denoted by Mc.

Lemma 1. Let M = (M, ·, 1) be a monoid and c be a nucleus over M. Then the
algebra

LcM = (Mc,∩,∪c, ◦c,�,�, c(∅), c({1}))

is a c(∅)–bounded residuated lattice, where X∪cY = c(X∪Y ), X◦cY = c(X◦Y ),
X�Y = {z ∈M : X ◦{z} ⊆ Y } and X�Y = {z ∈M : {z}◦Y ⊆ X}. Moreover
this lattice is complete, i.e.:

inf X =

{⋂
X∈X

X if X 6= ∅,
M if X = ∅,

sup X = c(
⋃

X∈X
X).
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The residuated lattice LcM is called the nuclear completion of the monoid
M. The partial order relation of LcM is ⊆.

Another known fact from the field of residuated lattices is that the existence
of residuals for · implies that · distributes over infinite joins. As a corollary we
obtain that every complete residuated lattice can be expanded to a ∗–continuous
action lattice by setting:

a∗ = sup
n∈ω

an.

This corollary leads to the following extension of Lemma 1.

Lemma 2. Let M = (M, ·, 1) be a monoid and c be a nucleus over M. Then the
algebra

AcM = (Mc,∩,∪c, ◦c,�,�, ∗, c(∅), c({1}))

is an action lattice, where X∗ = c(
⋃

n∈ω
Xn) (X0 = c({1}) and Xn+1 = X ◦cXn

for n ≥ 0).

We will also need three more auxiliary lemmas which we formulate and prove
here.

Lemma 3. Let M = (M, ·, 1) be a monoid and c be a nucleus over M. Then for
all X,Y ⊆M there holds:

X ◦c Y = X ◦c c(Y ).

Proof. From (c1), (c2) and the monotonicity of ◦ we yield thatX◦cY ⊆ X◦cc(Y ).
On the other hand, in a similar way we obtain that X ◦ c(Y ) ⊆ c(X) ◦ c(Y ) and
by (c4) that X ◦ c(Y ) ⊆ X ◦c Y . Finally, the thesis follows by (c2) and (c3).

Lemma 4. Let M = (M, ·, 1) be a monoid and c be a nucleus over M. Then for
each k > 1 and for all X1, X2, . . . , Xk ⊆M there holds:

X1 ◦c X2 ◦c . . . ◦c Xk = c(X1 ◦X2 ◦ . . . ◦Xk).

Proof. We will prove the lemma by induction on k. For the base step there is
nothing to prove; therefore it suffices to show that

X1 ◦c X2 ◦c . . . ◦c Xk = c(X1 ◦X2 ◦ . . . ◦Xk)

for an arbitrary k > 2. From the induction hypothesis we have that

X1 ◦c X2 ◦c . . . ◦c Xk = X1 ◦c c(X2 ◦ . . . ◦Xk),

where from the thesis follows by Lemma 3. ut

Lemma 5. Let M = (M, ·, 1) be a monoid and c be a nucleus over M. Then for
every family X of subsets of M there holds:

c(
⋃

X∈X
c(X)) = c(

⋃
X∈X

X).
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Proof. By (c2), the inclusion c(X) ⊆ c(
⋃

X∈X
X) holds for every X ∈X , where

from c(
⋃

X∈X
c(X)) ⊆ c(

⋃
X∈X

X) follows. On the other hand, by (c1) and the

monotonicity of
⋃

we have that
⋃

X∈X
X ⊆

⋃
X∈X

c(X). Finally, the thesis

follows by (c2). ut

We can now present our extension of the method nuclei and quasi–embedding
to the system ALω

∗ and its fragments. We fix a sequent Γ ` A. By F we denote
the set of all subformulas of formulas occurring in Γ ` A plus the atomic formulas
0 and 1. By F

∗
we denote the set of all strings of formulas from F . Therefore,

F = (F
∗
, ·, ε) is a monoid (· stands for concatenation of strings).

In the method of nuclei and quasi–embedding we should now define the set
T as the set of all sequents which appear in the proof–search tree for Γ ` A. But
such definition leads to an infinite set of sequents. So we need to define this set
in a slightly different manner. Let T be the smallest set of sequents satisfying
the following conditions:
• Γ ` A belongs to T ,
• for any instance of the finitary inference rule of ALω

∗, if the conclusion of
this rule belongs to T then all premises of this rule belong to T ,
• for any instance of the infinitary inference rule (∗L), if the conclusion

Ψ C∗ Φ ` D belongs to T then we choose to T at most one premise Ψ Cn Φ ` D
(for some n ∈ ω) from the premises that are unprovable (i.e. if the conclusion is
unprovable then we choose exactly one, and if it is provable we choose none).

We can treat this procedure as a reduction of the proof–search tree for Γ ` A
to a tree with nodes of finite degree. We will show now that all branches of this
tree are finite as well, where from the finiteness of the set T follows.

Let us recall some complexity measure of sequents from the paper of W. Busz-
kowski and E. Palka [4]. We will denote this measure by m. It assigns to every
sequent the following sequence of integers:

m(∆ ` B) = (u1, u2, . . . , ur),

where r is the maximal complexity of formulas appearing in ∆ ` B, and ui
is the number of occurrences of formulas of complexity i in this sequent (the
complexity of a formula is the total number of occurrences of symbols in it).
We define a well–ordering relation / on the set of all sequences of integers ω

∗
as

follows:

(u1, u2, . . . , ur) / (v1, v2, . . . , vs)

⇔
r < s or (r = s and umax{i:ui 6=vi} < vmax{i:ui 6=vi}).

It is easy to see that for any inference rule of ALω
∗ the complexity of the

conclusion is greater than the complexity of any premise. We can now prove the
following lemma which is crucial for our extension of the method of nuclei and
quasi–embedding.

Lemma 6. All branches of the proof–search tree for Γ ` A are finite.
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Proof. The proof is easy when it is proceeded by transfinite induction on m(Γ `
A). The thesis straightforwardly follows from the construction of the proof–
search tree for Γ ` A and the induction hypothesis. ut

We can now define a relation � ⊆ F ∗ × F as follows:

∆ � B ⇔ ∆ ` B is provable or ∆ ` B /∈ T .

We should prove now that this relation is satisfied by all axioms and is
preserved by all inference rules of ALω

∗. We will do it only for the rule (∗L),
since for the remaining rules it follows from the corresponding proofs for full
Lambek calculus, and for the rules (∗R) the proof is analogous.

Lemma 7. If for all n ∈ ω holds Ψ Cn Φ � D, then Ψ C∗ Φ � D holds.

Proof. Let Ψ Cn Φ � D hold for all n ∈ ω, and let us assume on the contrary
that Ψ C∗ Φ � D does not hold. It means that the sequent Ψ C∗ Φ ` D is not
provable and it belongs to T . Therefore, from the construction of the set T ,
there exists one premise Ψ Cn Φ ` D in T (for some n ∈ ω) that is not provable.
It means that Ψ Cn Φ � D does not hold for this n. ut

The next step of the method of nuclei and quasi-embedding is a construction
of the family of all basic sets B as a family containing the following sets of
strings of formulas for all Ψ, Φ ∈ F ∗ and B ∈ F :

[Ψ Φ,B] = {Ω ∈ F
∗

: Ψ Ω Φ � B}.

We will denote any basic closed set of the form [ε,B] = {Ω ∈ F ∗ : Ω � B}
by [B] for short. Using this family we define an operator c over the monoid
F = (F

∗
, ·, ε):

c(X) =
⋂
{[Ψ Φ,B] : X ⊆ [Ψ Φ,B]}.

This operator is nucleus over F (it is the standard construction in the method
of nuclei and quasi–embedding). As a corollary from this fact and Lemma 2 we
obtain that the algebra

AcF = (Mc,∩,∪c, ◦c,�,�, ∗, c(∅), c({ε}))

is an action lattice. Moreover we obtain that this algebra is finite since the family
B is finite (by the finiteness of the set T ).

The last technical lemma of the method of nuclei and quasi–embedding is a
lemma on a quasi–embedding F in AcM.

Lemma 8. Let f(p) = [p] be an assignment of variables from F in AcM. Then:

• for any formula B ∈ F , B ∈ f(B) ⊆ [B],

• for any string of formulas ∆ ∈ F ∗ , ∆ ∈ f(∆).
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Proof. The proof proceeds by inductions on the complexity of B and ∆ and it is
analogous to the corresponding proof for full Lambek calculus. We present only
cases concerning the constants 0 and 1 and the connectives ∨, · and ∗.

• B = 0

First we have to show that 0 ∈ f(0) = c(∅). According to the definition
of c, c(∅) is the intersection of all sets from B. But for any such set [Ψ Φ,G],
0 ∈ [Ψ Φ,G], since Ψ 0 Φ � G by the axiom (0L).

Second we have to show that f(0) = c(∅) ⊆ [0], however it is obvious by (c2)
and (c3).

• B = 1

First we have to show that 1 ∈ f(1) = c({ε}). Let [Ψ Φ,G] be an arbitrary set
such that {ε} ⊆ [Ψ Φ,G]. Hence Ψ Φ � G, and since the relation � is preserved
by the rule (1L), Ψ 1 Φ � G as desired.

Second we have to show that f(1) = c({ε}) ⊆ [1]. Clearly, ε ∈ [1], since the
relation � is satisfied by the axiom (1R). So, the thesis follows by (c2) and (c3).

• B = C ∨D
First we have to show that C ∨D ∈ f(C ∨D) = f(C) ∪c f(D). Let [Ψ Φ,G]

be an arbitrary set such that f(C) ∪ f(D) ⊆ [Ψ Φ,G], i.e. f(C) ⊆ [Ψ Φ,G] and
f(D) ⊆ [Ψ Φ,G]. From the induction hypotheses (C ∈ f(C) and D ∈ f(D))
we yield respectively that Ψ C Φ � G and Ψ D Φ � G. Finally we have that
Ψ C ∨D Φ � G by preserving the relation � by the rule (∨L).

Second we have to show that f(C ∨D) = f(C)∪c f(D) ⊆ [C ∨D]. It suffices
to show that f(C) ∪ f(D) ⊆ [C ∨ D], where from the thesis follows by (c2)
and (c3). Let Ω be an arbitrary string of formulas such that Ω ∈ f(C) ∪ f(D),
i.e. Ω ∈ f(C) or Ω ∈ f(D). Let us assume that Ω ∈ f(C) (the second case
is analogous), where from we yield that Ω � C by the induction hypothesis
f(C) ⊆ [C]. Finally we have that Ω � C ∨ D by preserving the relation � by
the rule (∨R).

• B = C ·D
First we have to show that C · D ∈ f(C · D) = f(C) ◦c f(D). Let [Ψ Φ,G]

be an arbitrary set such that f(C) ◦ f(D) ⊆ [Ψ Φ,G], i.e. E F ∈ [Ψ Φ,G] for
all E ∈ f(C) and F ∈ f(D). From the induction hypotheses (C ∈ f(C) and
D ∈ f(D)) we yield that Ψ C D Φ � E. Finally we have that Ψ C ·D Φ � E by
preserving the relation � by the rule (·L).

Second we have to show that f(C ·D) = f(C)◦c f(D) ⊆ [C ·D]. Analogously
to the previous case it suffices to show that f(C) ◦ f(D) ⊆ [C ·D]. Let Ω be an
arbitrary string of formulas such that Ω ∈ f(C)◦f(D), i.e. Ω is of the form Ψ Φ
for some Ψ ∈ f(C) and Φ ∈ f(D). From the induction hypotheses (f(C) ⊆ [C]
and f(D) ⊆ [D]) we yield that Ψ � C and Φ � D. Finally we have that Ω � C ·D
by preserving the relation � by the rule (·R).

• B = C∗

First we will show that

X∗ = c(
⋃

n∈ω
X n̂), (^)
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where X 0̂ = {ε}, X 1̂ = X and X n̂+1 = X ◦X n̂ for n ≥ 1.
Let us recall that

X∗ = c(
⋃

n∈ω
Xn),

where X0 = c({ε}) and Xn+1 = X ◦c Xn for n ≥ 0.

Therefore, c(X 0̂) = X0, c(X 1̂) = X1 (by Lemma 3) and c(X n̂) = Xn for
each n > 1 (by Lemma 4). Hence, X∗ = c(

⋃
n∈ω

c(X n̂)), where from (^) follows
by Lemma 5.

We will show now that C∗ ∈ f(C∗) = f(C)∗. Let [Ψ Φ,G] be an arbitrary
set such that

⋃
n∈ω

f(C)n̂ ⊆ [Ψ Φ,G], i.e. for each n ∈ ω, f(C)n̂ ⊆ [Ψ Φ,G]. For

n = 0 it means that {ε} ⊆ [Ψ Φ,G], i.e. Ψ Φ � E. For each n > 0, from the
induction hypothesis (C ∈ f(C)) we yield that Ψ Cn D Φ � E. Finally we have
that Ψ C∗ Φ � E by preserving the relation � by the rule (∗L).

Last we have to show that f(C∗) = f(C)∗ ⊆ [C∗]. Analogously to the pre-
vious cases it suffices to show that

⋃
n∈ω

f(C)n̂ ⊆ [C∗]. Let Ω be an arbitrary

string of formulas such that Ω ∈
⋃

n∈ω
f(C)n̂, i.e. Ω ∈ f(C)n̂ for some n ∈ ω. It

means that Ω is of the form Ψ1 Ψ2 . . . Ψn for some Ψ1, Ψ2, . . . , Ψn ∈ f(C) when
n > 0, or ε otherwise. From the induction hypothesis (f(C) ⊆ [C]) we yield that
Ψi � C for each i ∈ {1, 2, . . . , n}. Finally we have that Ω � C∗ by preserving
the relation � by the rules (∗R) (for n = 0, the axiom (∗R)). ut

Finally we can prove the main theorem of this paper, where from the com-
pleteness of the system ALω

∗ with respect to Eq(AL∗) and simultaneously the
FMP of Eq(AL∗) follow.

Theorem 1. ALω
∗ has the FMP.

Proof. Assume that Γ ` A is not provable. We define AcF and f as above. Then
by Lemma 8, Γ ∈ f(Γ ). Since Γ ` A belongs to T , Γ � A does not hold. Hence,
Γ /∈ [A], and again by Lemma 8, Γ /∈ f(A). So, f(Γ ) is not contained in f(A),
i.e., Γ ` A is not true in the finite model 〈AcF, f〉. ut

Clearly, this method can be applied to the subsystems AAω
∗, KLω

∗ and
KAω

∗, since the corresponding reducts of AcF are respectively a ∗–continuous
action algebra, Kleene lattice and Kleene algebra. As a corollary we obtain that
all the corresponding theories Eq(AA∗), Eq(KL∗) and Eq(KA∗) have the FMP as
well.
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