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Abstract. Generalised state machines (GSMs) are a restriction of ele-
mentary object nets (Eos) a Petri net formalism which again uses Petri
nets as tokens. Using GSMs or Eos many applications can be modelled
which involve the mobility of e.g. active objects or agents.
To understand GSMs better we investigate the complexity of the reach-
ability problem in certain restrictions here. We show that the problem is
solvable in polynomial time for a strongly deterministic GSM where the
system net and all object nets are marked graphs and that dropping the
restrictions only slightly already makes the problem NP -hard.

1 Introduction

Elementary object systems (Eos for short), are Petri nets in which tokens may be
Petri nets again. Originally proposed by Valk [14, 15] for a two levelled structure,
the formalism was later generalised in [5, 6] for arbitrary nesting structures.1

Even if restricted to a depth of two, Eos are already Turing complete and
thus many problems like reachability are undecidable [4] for them.

In most cases, however, the modelling power of elementary net systems is
not needed. Generalised state machines (GSM) are a subclass in which the du-
plication or destruction of object nets is not allowed and is thus nicely suited to
model physical entities.

To understand GSMs and their complexity better we focus on deterministic
and strongly deterministic GSMs in this paper and investigate the complexity
of the reachability problem if we restrict the allowed structure of the object nets
or the system net.

After presenting elementary object systems and generalised state machines
in Section 2, we show in Section 3 that the reachability problem for strongly
deterministic GSMs is solvable in polynomial time, if all object nets and the
system net are marked graphs, i.e. if |•p| = |p•| = 1 holds for all places. In
Section 4 we show that by dropping the restrictions slightly the reachability
problem becomes NP -hard. In the Outlook we discuss the boundary between
these cases and the associated open problems.

In the following we assume basic knowledge of Petri nets, see e.g. [13].

1 Many related approaches like recursive nets [2], nested nets [11], adaptive workflow
nets [12], Mobile Systems [10], and many others are known. See [8] for a detailed
discussion.
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2 Fundamentals

An elementary object system (Eos) is composed of a system net, which is a p/t

net N̂ = (P̂ , T̂ ,pre,post), and a set of object nets N = {N1, . . . , Nn}, which are

p/t nets given as Ni = (PNi
, TNi

,preNi
,postNi

). We assume N̂ 6∈ N and the
existence of the object net N• ∈ N which has no places or transitions and is used
to model black tokens. Moreover we assume that all sets of nodes (places and
transitions) are pairwise disjoint and set PN = ∪N∈NPN and TN = ∪N∈NTN .

The system net places are typed by the mapping d : P̂ → N with the meaning,
that if d(p̂) = N , then the place p̂ of the system net may contain only net-
tokens of the object net type N . The transitions in an Eos are labelled with
synchronisation channels by the synchronisation labelling l. For this we assume a
fixed set of channels C. In addition we allow the label τ which is used to describe
that no synchronisation is desired (i.e. autonomous firing). The synchronisation

labelling is then a tuple l = (l̂, (lN )N∈N ) where l̂ : T̂ → (N → (C ∪ {τ})) and
lN : TN → (C ∪ {τ}) for all N ∈ N . All these functions are total. The intended
meaning is as follows: lN (t) = τ means that the transition t of the object net
N fires (object-)autonomously. lN (t) = c 6= τ means that t synchronises via

the channel c with the system net. l̂(t̂)(N) = τ means that the system net

transition t̂ fires independent (or autonomous) from the object net N . l̂(t̂)(N) =
c 6= τ means that t̂ synchronises via the channel c with the object net N . In
case of a synchronous event the system net and the object net transitions have
to be labelled with the same channel. A system net transition t̂ fires system-
autonomously, if l̂(t̂)(N) = τ for all N ∈ N .

A marking of an Eos is a nested multiset, denoted µ =
∑n
k=1 p̂k[Mk], where

p̂k is a place in the system net and Mk is the marking of the net-token of type
d(p̂k). The set of all markings is denoted M. We define the partial order ≤ on
nested multisets by setting µ1 ≤ µ2 iff ∃µ : µ2 = µ1 + µ.

Π1(µ) denotes the projection of the nested marking µ to the system net level
and Π2

N (µ) denotes the projection to the marking belonging to the object net N ,
i.e. Π1(

∑n
k=1 p̂k[Mk]) =

∑n
k=1 p̂k and Π2

N (
∑n
k=1 p̂k[Mk]) =

∑n
k=1 1N (p̂k) ·Mk,

where 1N : P̂ → {0, 1} with 1N (p̂) = 1 iff d(p̂) = N .

Definition 1 (EOS). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, l) such that:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.
4. l = (l̂, (lN )N∈N ) is the labelling.

An Eos with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where µ0 ∈ M
is the initial marking.

The synchronisation labelling generates the set of system events Θ, which
consists of the disjoint sets of synchronous events Θl, object-autonomous events
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Θo, and system-autonomous events Θs. An event is a pair, denoted t̂[ϑ] in the
following, where t̂ is a transition of the system net or ε̂ if object-autonomous
firing is desired and ϑ maps each object net to one of its transitions or to ε if
no firing is desired in this object net, that is ϑ : N → TN ∪ {ε} where ϑ(N) 6= ε
implies ϑ(N) ∈ TN for all N ∈ N . Is ϑ(N) = ε for all N the system net transition
fires autonomously. We also use the shortcut ϑε for this function. The labelling
functions are extended to lN (ε) = τ and l̂(ε̂)(N) = τ for all N ∈ N .

We now distinguish three cases: For a synchronous event t̂[ϑ] ∈ Θl, the sys-
tem net transition t̂ 6= ε̂, fires synchronously with all the object net transi-
tions ϑ(N), N ∈ N . Thus at least one N ∈ N must exist with l̂(t̂)(N) 6= τ

and ϑ(N) 6= ε. We demand ϑ(N) 6= ε ⇔ l̂(t̂)(N) 6= τ and that the labels

have to match, i.e. l̂(t̂)(N) = lN (ϑ(N)) for all N ∈ N . Note that for ob-
ject nets which do not participate in the event (either because they are not
in the preset of the system net transition or because no object net transi-
tions fires synchronously) l̂(t̂)(N) = τ holds, which forces ϑ(N) = ε and thus

lN (ϑ(N)) = lN (ε) = τ = l̂(t̂)(N).

In the case of a system-autonomous event t̂[ϑ] ∈ Θs, t̂ 6= ε̂ fires autonomously.

Therefore we demand that l̂(t̂)(N) = τ for all N ∈ N and ϑ = ϑε, that is
ϑ(N) = ε for all N ∈ N .2

In the third case of a object-autonomous event ε̂[ϑ] ∈ Θo, ϑ(N) 6= ε for
exactly one object net N . Moreover the transition ϑ(N) must not use a channel,
that is lN (ϑ(N)) = τ has to hold.3

If we write t̂[ϑ] ∈ Θ in the following, this includes the possibility that the
event is an system- or object-autonomous event, i.e. ϑ = ϑε or t̂ = ε̂ is pos-
sible. Moreover, since the sets of transitions are all disjoint, we usually write
t̂[ϑ(N1), ϑ(N2), . . .] and also skip the object nets which are mapped to ε, that
is, we simply list the object net’s transitions with which a system net transition
synchronises.

Example 1. Figure 1 shows an Eos with the system net N̂ and the object nets
N = {N1, N2}. The system has four net-tokens: two on place p1 and one on p2
and p3 each. The net-tokens on p1 and p2 share the same net structure, but have
independent markings.

Formally we have the system net N̂ = (P̂ , T̂ ,pre,post) with the places

and transitions given by P̂ = {p1, . . . , p6} and T̂ = {t}, the object net N1 =
(P1, T1,pre1,post1) with P1 = {a1, b1} and T1 = {t1} and the the object net
N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}. The typing is
given by d(p1) = d(p2) = d(p4) = N1 and d(p3) = d(p5) = d(p6) = N2.

2 Note that this implies ϑ(N) 6= ε ⇔ l̂(t̂)(N) 6= τ , the equivalence we had to demand

in the case above. Moreover lN (ϑ(N)) = l̂(t̂)(N) follows, too.
3 Note that the labels match again for all N , i.e. l̂(t̂)(N) = l̂(ε̂)(N) = τ = lN (ϑ(N))

for all N ∈ N , but the equivalence ϑ(N) 6= ε⇔ l̂(t̂)(N) 6= τ does not hold for exactly
one N , namely for the N for which ϑ(N) 6= ε holds. ϑ(N) ∈ TN is the transition
intended to fire object-autonomously.
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Fig. 1. An Elementary Object Net System

We have two channels ch1 and ch2. The labelling function l̂ of the system
net is defined by l̂(t)(N1) = ch1 and l̂(t)(N2) = ch2. The labelling lN1

of the
first object net is defined by setting lN1

(t1) = ch1. Similarly, lN2
is defined by

lN2
(t2) = ch2.
There is only one (synchronous) event: Θ = Θl = {t[N1 7→ t1, N2 7→ t2]}.

The event is also written shortly as t[t1, t2].
The initial marking µ has two net-tokens on p1, one on p2, and one on p3:

µ = p1[a1 + b1] + p1[0] + p2[a1] + p3[a2 + b2]

Note that for Figure 1 the structure is the same for the three net-tokens on p1
and p2 but the net-tokens’ markings are different.

To explain firing we distinguish two cases: Firing a system-autonomous or
synchronous event t̂[ϑ] ∈ Θl∪Θs removes net-tokens together with their individ-
ual internal markings. The new net-tokens are placed according to the system
net transition and the new internal markings are determined by the internal
markings just removed and ϑ. Thus a nested multiset λ ∈M that is part of the
current marking µ, i.e. λ ≤ µ, is replaced by a nested multiset ρ.

The enabling condition is expressed by the enabling predicate φOS (or just φ
whenever OS is clear from the context):

φ(t̂[ϑ], λ, ρ) ⇐⇒ Π1(λ) = pre(t̂) ∧Π1(ρ) = post(t̂) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (ϑ(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)− preN (ϑ(N)) + postN (ϑ(N)),

(1)

where preN (ε) = postN (ε) = 0 for all N ∈ N .
For an object-autonomous event ε̂[ϑ] ∈ Θo let N be the object net for which

ϑ(N) 6= ε holds. Now φ(ε̂[ϑ], λ, ρ) holds iff. Π1(λ) = Π1(ρ) = p̂ for a p̂ ∈ P̂ with
d(p̂) = N and Π2

N (λ) ≥ preN (ϑ(N)) and Π2
N (ρ) = Π2

N (λ) − preN (ϑ(N)) +
postN (ϑ(N)). In case of an object-autonomous event λ and ρ are thus essentially
markings of an object net, but ’preceded’ by a system net place typed with this
object net.
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Definition 2 (Firing Rule). Let OS be an Eos and µ, µ′ ∈M markings. The
event t̂[ϑ] ∈ Θ is enabled in µ for the mode (λ, ρ) ∈M2 iff λ ≤ µ ∧ φ(t̂[ϑ], λ, ρ)
holds.

An event t̂[ϑ] that is enabled in µ for the mode (λ, ρ) can fire: µ
t̂[ϑ](λ,ρ)−−−−−→

OS
µ′.

The resulting successor marking is defined as µ′ = µ− λ+ ρ.

If the mode is not relevant we write µ
t̂[ϑ]−−→
OS

µ′.

We say that t̂[ϑ] is enabled in µ or simply active if a mode (λ, ρ) exists such
that t̂[ϑ] is enabled in µ for (λ, ρ).

Example 2. Consider the Eos of Figure 1 again. The current marking µ of the
Eos enables t[N1 7→ t1, N2 7→ t2] in the mode (λ, ρ), where

µ = p1[0] + p1[a1 + b1] + p2[a1] + p3[a2 + b2] = p1[0] + λ
λ = p1[a1 + b1] + p2[a1] + p3[a2 + b2]
ρ = p4[a1 + b1 + b1] + p5[0] + p6[c2]

Fig. 2. The EOS of Figure 1 illustrating the projections Π2
N (λ) and Π2

N (ρ)

The net-tokens’ markings are added by the projections Π2
N resulting in the

markings Π2
N (λ). The sub-synchronisation generate Π2

N (ρ). (The results are
shown above and below the transition t in Figure 2.) After the synchronisa-
tion we obtain the successor marking µ′ with net-tokens on p4, p5, and p6 as
shown in Figure 2:

µ′ = (µ− λ) + ρ = p1[0] + ρ
= p1[0] + p4[a1 + b1 + b1] + p5[0] + p6[c2]

The state space of an Eos is of infinite size in general and many problems
like reachability are undecidable for them. In [9] we therefore introduced four
different notions of safeness for Eos. Here we concentrate on a safeness definition
that guarantees finiteness of the state space.4

4 In [9] this definition is called safe(3) and positive results for safe(3) Eos immediately
carry over to safe(4) Eos.
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Definition 3 (Safeness). An Eos OS is safe iff for all reachable markings
there is at most one token on each system net place and each net-token is safe:

∀µ ∈ RS (OS ) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M ] ≤ µ : M(p) ≤ 1

2.1 Generalised State Machines

A generalised state machine (GSM) is an Eos such that every system net tran-
sition has either exactly one place in its preset and one in its postset typed with
the same object net or there are no such places. Additionally the initial marking
has at most one net-token of each type.

Definition 4. Let G = (N̂ ,N , d, l, µ0) be an Eos. G is a generalised state
machine (GSM) iff for all N ∈ N \ {N•}

1. ∀t̂ ∈ T̂ : |{p̂ ∈ •t̂ | d(p̂) = N}| = |{p̂ ∈ t̂• | d(p̂) = N}| ≤ 1
2.
∑
p̂∈P̂ ,d(p̂)=N Π

1(µ0)(p̂) ≤ 1

holds.

Note that, if the second item holds at the beginning, it will hold for all
reachable markings, due to the first item.

Generalised state machines where first introduced in [7] (there called ordinary
object-net systems) where it was proven that reference and value semantics are
equivalent for them.

For each GSM a p/t net, called reference net, can be easily constructed
(see [7]).

The reference net Rn(G) of a GSM G is a p/t net and is obtained by taking
as set of places the disjoint union of all places of G and as set of transitions the
events of G. Given a marking µ of G the projections (Π1(µ), (Π2

N (µ))N∈N ) can
be identified with the multiset:

Rn(µ) := Π1(µ) +
∑
N∈N

Π2
N (µ),

since the places of all nets in N are disjoint. These are the markings in the
reference net.

Definition 5. Let G = (N̂ ,N , d, l, µ0) be a GSM.5 The reference net, denoted
by Rn(G), is defined as the p/t net:

Rn(G) =
((
P̂ ∪

⋃
N∈N

PN

)
, Θ,preRn,postRn,Rn(µ0)

)
5 The definition of a reference net for an Eos is analogously, but Theorem 1 in general

only holds in one direction then. We focus on GSMs here.
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where preRn and postRn are defined for an event t̂[ϑ] by:

preRn(t̂[ϑ]) = pre(t̂) +
∑

N∈N
preN (ϑ(N))

postRn(t̂[ϑ]) = post(t̂) +
∑

N∈N
postN (ϑ(N)),

with pre(ε̂) = post(ε̂) = 0 and preN (ε) = postN (ε) = 0 for all N ∈ N .

The term reference net stems from the fact that Rn(G) behaves as if each
object net (inG) would have been accessed via pointers and not like a value. Since
each object-net exists in a GSM at most once, the difference between references
and values does not truly exist (cf. [7]). We still use the term reference net, since
the above definition can also be used for Eos.

We repeat two easy to prove theorems (cf. [4] and [7]) which allow to carry
over results for p/t nets to generalised state machines:

Theorem 1. Let G be a generalised state machine. An event t̂[ϑ] is activated
in G for (λ, ρ) iff it is in Rn(G):

µ
t̂[ϑ](λ,ρ)−−−−−→

G
µ′ ⇐⇒ Rn(µ)

t̂[ϑ]−−−−→
Rn(G)

Rn(µ′)

Theorem 2. The reachability problem is decidable for generalised state ma-
chines.

In the definition of the reference net (Definition 5) the set of events is present.

Unfortunately, given a GSM G = (N̂ ,N , d, l, µ0) the number of events may
become huge. To see this let Ti be the set of transitions of the object net Ni. Let
l̂(t̂)(Ni) = ci for all i and one system net transition t̂, where the ci are channels.
Let lNi(t) = ci for all t ∈ Ti and all i. Now t̂ may fire synchronously with each
transition in N1, each in N2 and so on. Each of these possibilities results in a
different event, so we already have at least |T1| · |T2| · . . . · |Tn| events, a number
exponential in the number of object nets and thus in the size of the GSM. Note
that this is possible for each system net transition resulting in an even larger
number of events.

Lemma 1. Let |T | := max{|TN | | N ∈ N} then the space needed to store Θ is

in O(|T̂ | · |T ||N | · e), where e is the space needed to store one event t̂[ϑ], that is
e = O(|N |).

Given a GSM it might thus be very expensive to construct its reference net.
Note that this is due to the nondeterminism introduced above by the labelling.
All transitions of one object net are labelled with the same channel, so one of
the transitions is chosen nondeterministically to fire synchronously with t̂. To
prevent this, we introduced deterministic GSMs in [3]:

Definition 6. A GSM G is called deterministic if for each N ∈ N the value
of lN (t) differs for all t ∈ TN with lN (t) 6= τ . G is strongly deterministic if in

addition for all t̂ and N with l̂(t̂)(N) 6= τ the value of l̂(t̂)(N) differs.
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Thus, in a deterministic GSM each channel is used at most once in each
object net. In a strongly deterministic GSM each channel is also used at most
once in the system net.

On the one hand GSMs can be used to model mobility and communication
of processes or agents - even if only to a smaller degree compared to Eos or
general object nets. On the other hand a GSM G can be ’flatten’ to the ref-
erence net Rn(G), which is a p/t net and which thus makes it possible to use
analyses techniques for p/t nets. Since GSMs are thus as powerful as p/t nets,
it is interesting to investigate if certain restrictions known for p/t nets can be
transferred to GSMs and if they retain their complexity.

3 GSMs and Marked Graphs

In the following we restrict the structure of the object nets and the system
net and investigate the complexity of the reachability problem. At first we
severely restrict both the object nets and the system net to marked graphs,
i.e. |•p| = |p•| = 1 holds for all p ∈ P̂ ∪ PN . Given a strongly deterministic
GSM G, the reference net Rn(G) is then also a marked graph and thus the
reachability problem is in P . The proof is very similar to a proof in [3], where
it was proven that for a strongly deterministic and conflict-free GSM G the ref-
erence net Rn(G) is a conflict-free p/t net. For a strongly deterministic GSM
conflict-freedom is just conflict-freedom of the system net and all object nets.

Theorem 3. Let G = (N̂ ,N , d, l, µ0) be a strongly deterministic GSM with

|•p| = |p•| = 1 for all p ∈ P̂ ∪ PN , i.e. the system net and all object nets
interpreted as p/t nets are marked graphs. Then the p/t net Rn(G) is a marked
graph.

Proof. Let p ∈ P (Rn(G)). Our goal is to show |preRn(p)| = |postRn(p)| = 1.6

We distinguish two cases: p ∈ P̂ or p ∈ PN for a N ∈ N . Let p ∈ P̂ . Since
|p•| = 1 holds, p is connected with a system net transition and thus associated
with an event, thus |postRn(p)| ≥ 1. Assume |postRn(p)| > 1 holds. Then two
events t̂[ϑ], t̂′[ϑ′] ∈ postRn(p) with t̂[ϑ] 6= t̂′[ϑ′] exist and p ∈ pre(t̂)∧p ∈ pre(t̂′)

follows from Definition 5 and p ∈ P̂ . This implies t̂ 6= ε̂ 6= t̂′, since pre(ε̂) = 0.
The events are thus not object-autonomous. With this and from t̂[ϑ] 6= t̂′[ϑ′],

t̂ 6= t̂′ follows. Assume otherwise. Then a net N ∈ N would have to exist with
ϑ(N) 6= ϑ′(N). But with ϑ(N) = t1 6= t2 = ϑ′(N) synchronisation would require

that lN (t1) = l̂(t̂)(N) = lN (t2), which is not possible in a deterministic GSM, if
t1, t2 ∈ TN .7 If w.l.o.g. t1 ∈ TN and t2 = ε, then lN (t2) = lN (ε) = τ = lN (t1)
would mean that t1 fires object-autonomously in contrast to t̂′ 6= ε̂. But with
t̂ 6= t̂′ and p ∈ pre(t̂) ∧ p ∈ pre(t̂′) we have a contradiction to |p•| = 1!

6 In Definition 5 preRn and postRn took events as argument. Here we mean the pre-
and postsets of a place p in the reference net. If we mean the pre- and postsets in
the original system or object nets we write •p, resp. p•.

7 Note that for t ∈ TN , ϑ(N) = t implies lN (t) 6= τ .
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The case |preRn(p)| > 1 analogously leads to a contradiction and thus

|preRn(p)| = |postRn(p)| = 1 for p ∈ P̂ .
Now let p ∈ PN for a N ∈ N . Like above |postRn(p)| is at least 1. Assume

|postRn(p)| > 1. Again two events t̂[ϑ], t̂′[ϑ′] ∈ postRn(p) with t̂[ϑ] 6= t̂′[ϑ′]
exist. This time p ∈ preN (ϑ(N)) ∧ p ∈ preN (ϑ′(N)) follows from Definition 5
and p ∈ PN .8 This implies ϑ(N) 6= ε 6= ϑ′(N) (because preN (ε) = 0). The
events are thus not system-autonomous.

The case ϑ(N) 6= ϑ′(N) immediately implies a contradiction to |p•| = 1.
In the case of ϑ(N) = ϑ′(N), neither t̂ = t̂′ = ε̂, nor t̂ = t̂′ 6= ε̂ is possible.

In the first case both events would be equal (remember that ϑ(N) and ϑ′(N)
are both not ε, thus N is the only object net not mapped to ε by ϑ, resp. ϑ′,
which implies that the events are equal). The second case is not possible as was
already shown above. Thus t̂ 6= t̂′ holds and only two possible cases are left:
Either both events are synchronous events or one is a synchronous the other
an object-autonomous event. In the first case l̂(t̂)(N) = l̂(t̂′)(N) follows from

l̂(t̂)(N) = lN (ϑ(N)), l̂(t̂′)(N) = lN (ϑ′(N)) and ϑ(N) = ϑ(N ′), but this is not
possible in a strongly deterministic GSM. In the second case let w.l.o.g. t̂[ϑ] ∈ Θl
and t̂′[ϑ′] = ε̂[ϑ′] ∈ Θo. But since ϑ(N) and ϑ′(N) are both not ε (but transitions
of N), this would mean that ϑ(N) fires synchronously with t̂ and ϑ′(N) fires
object-autonomously (i.e. is not labelled with a channel). Since ϑ(N) = ϑ′(N),

this is not possible. Thus like above (in the case p ∈ P̂ ) where t̂ = t̂′ was not
possible, here (in the case p ∈ PN ) ϑ(N) = ϑ′(N) is not possible.9

The case |preRn(p)| > 1 is again analogously and from this |preRn(p)| =
|postRn(p)| = 1 follows for all p ∈ P (Rn(G)). Rn(G) is therefore a marked
graph.

Since in a (strongly) deterministic GSM the number of events is bounded
by a polynomial10 the reference net can be constructed in polynomial time.
Since reachability can be decided in polynomial time for a marked graph [1], the
following corollary follows:

Corollary 1. The reachability problem for strongly deterministic GSMs with
|•p| = |p•| = 1 for all p ∈ P̂ ∪ PN is solvable in polynomial time.

4 GSMs and NP-completeness

By dropping the condition that the GSM has to be strongly deterministic and
only requiring a deterministic GSM the reference net must not necessarily be a

8 Note that the object nets can not be different, since p ∈ PN holds.
9 Note, that ϑ(N) = ϑ′(N) is thus not possible and that in this part of the proof the

marked graph characteristic was not used. For this reason this part is the same as
in Theorem 4.8 in [3].

10 There are at most |T̂ | system-autonomous and
∑

N∈N |TN | object-autonomous
events. The sum of these is a upper bound for the number of events, because each
synchronous event can be thought of here as a combination of a system- and several
object-autonomous events.
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Fig. 3. A GSM G (left) with its reference net Rn(G).

marked graph. Figure 3 shows an example. Note that the system net on the left
is a deterministic GSM with |•p| = |p•| = 1 for all p ∈ P̂ ∪ PN . The reference
net on the right is not a marked graph.

If we also change the condition for the system net from |•p| = |p•| = 1 to
|•t| = |t•| = 1, we end up with a formalism in which the reachability problem is
NP -hard.

Theorem 4. Let G = (N̂ ,N , d, l, µ0) be a deterministic GSM with |•p| = |p•| =
1 for all p ∈ PN , and |•t| = |t•| = 1 for all t ∈ T̂ . Moreover there is only one
object net (|N | = 1) and |Π1(µ0)| = 1 holds. Then the reachability problem is
NP -hard.

Proof. We only sketch the proof here. The reduction is from Longest Path, where
a directed graph G = (V,E), two nodes v1, v2 and a number k is given and the
question asked is, if a path exists from v1 to v2 with a length of at least k.

We have one object net consisting of a place p and one transition t1 in p’s
preset and one transition t2 in p’s postset. t1 is labelled with channel inc, t2 is
labelled with τ (object-autonomous firing). The idea is that the object net travels
along the path and that whenever a edge is used, t1 fires. Thus the number of
tokens on p are the number of edges used.

For this we create for each node v ∈ V a place p̂v in the system net and
for each edge e = (v, v′) ∈ E a transition t̂e and two arcs (p̂v, t̂e), (t̂e, p̂v′). The
transitions t̂e for e ∈ E are all labelled with the channel inc.

The object net is placed on the (start) node p̂v1 .
If a path from v1 to v2 exists with length m ≥ k. The object net can ’travel’

along this path from p̂v1 to p̂v2 and we end up in the marking p̂v2 [m · p]. The
other direction is proven similarly.

To be able to formulate this as a reachability problem (where we ask for an
exact number of tokens on the place p), we need to be able to remove tokens
from place p. For this the object-autonomous event ε̂[t2] may remove tokens from
p.

Thus given an instance (G, v1, v2, k) from Longest Path we construct the
GSM outlined above and asked if the marking p̂v2 [k · p] is reachable.
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Fig. 4. Example of the construction in the proof of Theorem 4

Figure 4 shows an example. This construction is clearly possible in polynomial
time and thus the problem is NP -hard.

Note that the GSM sketched above only uses one object net type and no
black tokens on the system net level. Net systems with this property are called
unary. Thus even in the case of unary GSMs dropping the requirement to be
strongly deterministic to just being deterministic and changing the condition for
the system net to |•t| = |t•| = 1 and |Π1(µ0)| = 1, already results in a formalism
where the reachability problem is NP -hard. Note that all object nets are marked
graphs and that for them the reachability problem is in P . Also note that a for
a p/t net with the requirements inflicted upon the system net, the reachability
problem would also be in P .

5 Conclusion and Outlook

The focus of the paper was the definition and analysis of restrictions of gener-
alised state machines. We showed that for strongly deterministic GSMs where
each net is a marked graph, the reachability problem can be decided in polyno-
mial time.

If we look at deterministic GSMs instead of strongly deterministic ones and
require |•t| = |t•| = 1 for all t ∈ T̂ and |Π1(µ0)| = 1 (there is only one object
net), the reachability problem is alreadyNP -hard. It is not known if this problem
is also in NP , but we suspect so.

The complexity of the problem ’in between’, that is, the reachability problem
for deterministic GSMs where each object net and the system net are marked
graphs, is currently unknown. One problem is, that GSMs which are only deter-
ministic might have a huge number of different events and it is not yet clear, if
it is necessary to construct them all.
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