
Using Timed Petri Nets to Model
Spatial-temporal Group Scheduling Problems

Daniel Graff1, Tammo M. Stupp1, Jan Richling1, and Matthias Werner2

1 Communication and Operating Systems Group,
Berlin Institute of Technology, Germany

{dgraff,stupp,richling}@cs.tu-berlin.de
2 Operating Systems Group, Chemnitz University of Technology, Germany

matthias.werner@informatik.tu-chemnitz.de

Abstract. Dealing with cyber-physical systems (CPS) puts a strong
emphasis on the interaction between computing and non-computing el-
ements. Since the physical world is characterized by being strongly dis-
tributed and concurrent, this is also reflected in the computational world
making the design of such systems a challenging task. If a number of tasks
shall be executed on a CPS where each task is bound to time and space,
may have dependencies to other tasks and requires a specific amount
of computing devices, a solution requires a four-dimensional space-time
schedule which includes positioning of the devices resulting in an NP-
hard problem.
In this paper, we address the problem of spatial-temporal group schedul-
ing using Timed Petri nets. We use Timed Petri nets in order to model
the spatial, temporal, ordered and concurrent character of our mobile,
distributed system. Our model is based on a discrete topology in which
devices can change their location by moving from cell to cell. Using the
timed property of Petri nets, we model movement in a heterogeneous
terrain as well as task execution or access to other resources of the de-
vices. Given the modeling, we show how to find an optimal schedule by
translating the problem into a shortest path problem, which is solvable
with the known method of dynamic programming.

1 Introduction

Analyzing the technical evolution starting from over half a century ago up to
nowadays, it is obvious that computational devices become more powerful (ac-
cording to Moore’s law), get smaller in size and as a rather recent trend mobility
and pervasive computing gain a major issue in the everyday life of people. By
becoming increasingly interconnected and communicative, these devices form
new types of intelligent distributed systems that are aware of themselves, their
surroundings (using sensors), and their capabilities to manipulate the former
two (using actuators). In particular, a strong interaction with the physical world
as performed, e.g., by mobile robots, involved in the same global system lead to
the emergence of cyber-physical systems (CPS) where “physical processes affect

CONCURRENCY, SPECIFICATION AND  PROGRAMMING 
M. Szczuka et al. (eds.): Proceedings of the international  workshop CS&P 2011 
September 28-30, Pułtusk, Poland, pp.  160-168



Timed Petri Nets in Spatial-temporal Group Scheduling Problems 161

computations and vice versa” [5]. By focusing on the physical world it becomes
obvious that non-computational processes (physical actions) are strongly dis-
tributed and concurrent. Thus, designing and programming those systems have
to cope with those issues. Since thinking in distributed and concurrent terms is
complexity-introducing and often error-prone [6], we have studied this problem
and proposed a suitable programming model [2, 3, 4] that both abstracts from
distribution and concurrency by allowing the programmer to develop sequential
object-oriented program code. Besides the imperative code fragments, declar-
ative annotations can be integrated into the source code for defining spatial-
temporal constraints that are glued to imperative code fragments and restrict
its execution.

In our approach, we propose a systemic view in order to describe the impact
on non-computing (physical) entities of the real world that in classical embed-
ded system design is called “controlled object”. In our programming model, we
represent those non-computing entities by objects3. Based on the concept of
object-oriented program design, a method is responsible for interacting with the
object. Therefore, we use methods that we call actions that represent the in-
terface between computing and non-computing elements. In particular, actions
invoked in the cyber world result in physical actions by means of sensors/ ac-
tuators that affects the controlled object. Actions may involve multiple sensors/
actuators that have to be used at a specific time at a specific physical loca-
tion. Generally speaking, this requires a coordination of resources in space and
time. Therefore, in this paper, we address the problem of spatial-temporal group
scheduling by using Timed Petri nets. Our concept is to map space to time and
describe physical locations based on durations needed to change locations. The
computation of a schedule is based on those timed transitions.

The remainder of the paper is structured as follows: In Section 2, we provide
a basic understanding of our assumptions about the domain we are targeting
including a problem statement and the overall goal. In order to formalize our
problem and build up a model, Section 3 introduces Timed Petri nets as a
well-known method to model dynamic systems with discrete states followed by
Section 4 which shows the modeling elements. Section 5 provides an analysis of
the modeled problem by finding an optimal schedule by mapping to the shortest
path problem. Finally, Section 6 concludes the paper and gives an overview about
future work.

2 Assumptions

In our understanding, a task is associated with a duration and, e.g., a deadline at
which the task has to be completed depending on hard or soft deadlines. Thus,
tasks may have temporal constraints. In this paper, we extend the classical view
by a new dimension: space.

3 In terms of a programming language



162 D. Graff, T. M. Stupp, J. Richling, M. Werner

A task t is described by a set of properties {d, p, p′, r, T ′}, with d indicating
the duration4 of the task and p and p′ the beginning and ending location of the
task, respectively. A task may also bound to a fixed location—in that case p and
p′ are identical. A location is a physical position on a 2D surface. In addition, we
address the problem of performing tasks jointly, i.e., a given amount of robots
r ∈ R, with |R| denote the total number of robots, is required to perform a task
that have to be coordinated in space and time. For simplification, we assume
tasks are non-interruptable. Finally, the execution of t depends on the result of
the set of predecessor tasks T ′ that need to be executed prior to t.

Fig. 1. Examples for discrete topologies

The 2D surface in which the robots operate is discretized and mapped to
a specific topology. Each cell ci in the topology indicate a space in which an
arbitrary amount of robots can be placed: ci ∈ {x ∈ N | 0 ≤ x ≤ |R|} and∑
ci = |R|. We support different topologies as shown in Fig. 1 with respect to

the geometry of the surface, the discretization (cell shape) and the multiplicity
of movements. A robot can change its location by moving in discrete steps to a
neighboring cell along the indicated arrows. On the left hand side of the figure
a cell is represented by a square and exhibits four possible movements of a
robot. The middle topology doubles the degree of freedom by allowing diagonal
movements. Finally, the topology on the right shows a discretization that is
based on hexagons which allows for six different types of movements. During
each time step a robot has different options:

– Stay in the current cell (idle)
– Move along the arrows towards a neighboring cell
– Execute a task (if the task involves movement, the robot moves towards the

tasks’ ending location while executing it at the same time)

The movement model is based on a binary state: The robot does not move
(idle) or simply moves (speed is not incorporated in the model). If a robot
decides to move to a neighboring cell, the cell transition is associated with a
given amount of time required for reaching the other cell (this again represents
4 In this paper we always assume the worst case duration, i.e., the worst case execution
time.



Timed Petri Nets in Spatial-temporal Group Scheduling Problems 163

the worst case time needed for moving the robot). The topology does not have a
homogeneous terrain, thus, times between cell transitions may vary. With this,
we are able to model accessible and non-accessible obstacles. Driving uphill takes
more time to process the transition than driving downhill. On the other hand, a
solid formation, e.g. rocks, are not accessible and, thus, the robots have to take
the longer way in terms of geographic distance. Altogether, this approach allows
us to model the important properties of robots moving in a terrain without
the need to deal with the physics of the actual movement actions—these are
represented by the time needed for transitions between the cells.

Now, the overall goal is to find a schedule with minimal makespan such that
all tasks ti are executed according to their requirements of beginning and ending
location and the number of robots which includes physical positioning of robots.

3 Timed Petri Nets

Petri nets [8] are a well-known method to model dynamic systems with discrete
states. The original Petri net does not include a notion of time. However, there
exist a number of extensions to Petri nets enabling them to deal with time.
The probably most two famous approaches are Time Petri nets [7] and Timed
Petri nets [9], also called Duration Petri nets (DPN). In this paper, we use
the later one5: A Timed Petri net or Duration Petri net is a structure N =
(P, T, F, V,D,m0), where

– P, T, F are finite sets with P ∩T = ∅, P ∪T 6= ∅, F ⊆ (P ×T )∪ (T ×P ) and
dom(F ) ∪ cod(F ) = P ∪ T , where the elements p ∈ P are called places, the
elements τ ∈ T are called transitions, and the elements of F are called arcs.

– V : F → N is a weight of the arcs
– D : T → N is a duration function so that D(τ) denotes the delay of the

transition τ .6
– A mapping P → N is called a marking of the net. We say the marking assigns

to each place a number of tokens. m0 is the initial marking.

The marking of a TPN may change considering the following rules:

– A transition τ is enabled at marking m iff ∀p ∈ P, (p, τ) ∈ F,m(p) ≥ V (p, τ).
– If at least one enabled transition exists, transitions of the TPN must fire.7

– During firing of a transition τ , tokens are removed and added:
• At firing time t0: ∀p ∈ P, (p, τ) ∈ F,m′(p) = m(p)− V (p, τ)
• At time t0 +D(τ): ∀p ∈ P, (τ, p) ∈ F,m′(p) = m(p) + V (τ, p)

5 Please note that differing from the definition given in [9], we allow zero time duration
and a transition may fire immediately again

6 Usually, a mapping T → Q is considered; however, it is easy to see, that considering
TPN with D : T → N will not result in a loss of generality.

7 Please note the difference to original Petri nets: there, an enabled transition may
fire.



164 D. Graff, T. M. Stupp, J. Richling, M. Werner

...

...
...

...

... ... ... ...

τw <1> 

τw <1> 

τw <1> 

τw <1> 

τw <1> 

τw <1> τw <1> 

τw <1> τw <1> τw <1> 

τw <1> τw <1> 

Fig. 2. Model of a grid topology (all transitions are timed)

Please note, that our definition abandons transition clocks, but considers the
transition delay by the firing semantic. This allows self-concurrency for firing
of a transition. I.e., a transition that stays enabled after initiate a firing may
immediately (i.e., without elapsing of time) start firing again.

4 Modeling

In this section, we describe how to set up a model for our problem of spatial-
temporal group scheduling problems based on the assumptions given in Section 2
by means of Timed Petri nets as presented in Section 3. We split our model into
two parts: Physical movement in a 2D area and constrained task execution before
we put both together and glue it into one model.

Let’s start to find a suitable abstraction in order to describe physical lo-
cations in which robots operate. As described in Section 2, the 2D surface is
discretized and mapped to a specific topology (cf. Fig 1). Arrows indicate pos-
sible movements in order to reach neighboring cells. We model this topology
by means of Timed Petri nets. Each cell of the topology is mapped to a single
place8 of the net and each arrow is mapped to a transition8 as shown in Fig. 2
for the grid. As common for a TPN, transitions are timed (denoted in sharp
brackets). By using timed transitions, we model how much time is required by
a robot in order to change its current location Our concept is to map space to

8 Places and transitions in terms of Petri nets



Timed Petri Nets in Spatial-temporal Group Scheduling Problems 165

ps

τa  <td> 

p1 p2

p's
r r

Fig. 3. Modeling an activity

time and describe physical locations based on durations needed to change loca-
tions. However, tokens represent the robots and, thus, also their current physical
location.

Based on the characteristic of a TPN—an enabled transition must fire—
the robots would be forced to move. Based on our assumptions of Section 2
a robot may also stay calm at its current location for an arbitrary amount of
time. Therefore, we model an additional transition τw that allows to model such
behavior.

We define an activity as a task that shall be executed by one or several robots
and takes a certain amount of time for execution. We model this by using a timed
transition τa with a duration of td time units as shown in Fig. 3.

Places p1 and p2 reflect the status of the activity, i.e., a token on p1 marks the
activity as “ready to run” while p2 states that the activity has been executed.
With this modeling an activity can only be executed once. Furthermore, an
activity is bound to a physical location at which it shall be executed and requires
a given amount robots that need to be incorporated in the common execution.
Place ps9 denotes the physical location at which the execution shall be started
and place p′s denotes the location at which the execution shall end. If ps = p′s
then the robots do not move while executing the activity. The parameter r on
the arc between ps, τa and τa, p′s denotes the amount of robots incorporated in
the activity. Modeling dependencies between two activities A1 and A2 can be
easily done by using p2 of A1 as p1 of A2. Enabling τa of A2 can, therefore, only
be done if p2 of A1 is marked.

Now, we have to put both models together resulting in one TPN as shown
in Fig. 4—due to the construction of our model elements, this composition is
straightforward. There, we have in total four robots positioned on the physical
grid. Two of the robots stay at the same physical location. Assuming r = 4 and
τa shall be enabled, requires the other two robots to move to the upper left place.
If transition τa fires, place p2 is marked and r tokens are put on the place in the
middle of the grid. Assuming, we have multiple activities, the overall goal is to

9 For clarity places denoted with index s stands for physical locations (space)



166 D. Graff, T. M. Stupp, J. Richling, M. Werner

...

...

...

...

... ... ... ...

τa  <td> 

p1
p2

r

r

τw <1> 

τw <1> 

τw <1> 

τw <1> 

τw <1> 
τw <1> 

τw <1> 
τw <1> τw <1> τw <1> 

τw <1> τw <1> 

Fig. 4. Modeling a complete scheduling problem

mark every p2 of each activity with a token indicating that we have executed all
activities.

5 Analysis

After modeling the problem, we can find an optimal schedule by translating the
problem into a shortest path problem, which is solvable with the known methods
of dynamic programming, cf., e.g., [1, 11].

For this translation, we use a similar approach we have chosen in [10]. There,
the optimization parameter was the reward, mapped to number of tokens at
certain places, and time (deadline) was a side condition. Here, time is the opti-
mization parameter and a certain marking is the side condition.

The straightforward solution is to spawn the state graph with transition
delays as arc weight, seek the state(s) that has the places p2 marked for all
activities (goal states), and use dynamic programming to find the shortest path
to a goal state. This path represents the optimal schedule. However, the state
space might be infinite, even if the Petri net itself is finite. Also, it might be
possible that no goal state is reachable.

If we consider the structure of a model net instance, we can make the obser-
vation that all transitions are conservative. I.e., firing never change the overall



Timed Petri Nets in Spatial-temporal Group Scheduling Problems 167

number of tokens. Because of this observation, the overall net is conservative,
too, ∀m, reachable(m), |m| = |m0|10, and following, the (timeless) state space of
the net is finite. Thus, there is no need to add another timed edge (s1, s2) to the
state space graph, if there is already an edge between s1 and s2, i.e., the first
edge covers all other edges regarding a shortest path algorithm. Following, the
“interesting” state graph is finite.

Let rmax = max(ri) and na the number of activities. Obviously, no goal state
can reached if |m0| < na + rmax. In this case, there exist no feasible schedule. If
there are enough (i.e. at least r) tokens at location places, it is easy to see that
a goal state is always reachable.11

The complexity of spawning the state space is exponential, whereas finding
the schedule has a polynomial complexity in the number of states in the state
space. However, the shortest path algorithm can be done during the spawning,
c.f. [10]. Then, the first found goal state terminates the spawning.

6 Conclusion

Designing CPS is a challenging task since it has to consider interactions between
several computing and non-computing elements, and, thus, consideration of con-
current and distributed tasks. In particular, if a task has to be executed jointly
by multiple robots and in addition is bound to a specific physical location, this
requires a coordination of robots in space and time. Furthermore, considering
multiple tasks, with individual demands in terms of execution time, number
of robots, dependencies between tasks and begin and end location requires a
suitable spatial-temporal group scheduling.

In order to deal with these problems, an appropriate modeling technique is
needed. In this paper, we propose to use Timed Petri nets to model the spatial-
temporal properties of such systems. The model itself is based on a discrete
topology where each cell represents a physical location on a 2D surface. This
topology is represented by a Timed Petri net where the transitions between the
cells represent the movement of robots in a simplified way by assigning times
to these transitions. Similarly, local executions are modeled based on the time
they need. This model allows to map our problem of finding a spatial-temporal
schedule for a CPS to the problem of finding a path such that all given tasks have
been executed and the time is minimized—a shortest path problem. Therefore,
we are able to apply known methods of dynamic programming to solve the
problem.

As future work, we plan to consider the following directions: We want to
incorporate different types of robots by using Coloured Petri nets enabling to
model robots with different properties (e.g., different speed, different capabili-
ties with respect to terrain, different capabilities to execute applications, etc.).
Furthermore, similar to common operating system tasks, we want to support
10 For a given marking m, |m| denotes the number of tokens
11 Obviously in the timeless net; in the timed net because of τw as loop at all location

places.



168 D. Graff, T. M. Stupp, J. Richling, M. Werner

suspending and resuming the execution of a task. Finally, we aim to define and
describe a general approach to space-time scheduling which is be based on a con-
tinuous space and may include deadlines and, e.g., specific formations of robots.

References

[1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 2nd edn. (2001)

[2] Graff, D., Richling, J., Stupp, T.M., Werner, M.: Context-aware annotations for
distributed mobile applications. In: Wolfgang Karl, D.S. (ed.) ARCS’11 Work-
shop Proceedings: Second Workshop on Context-Systems Design, Evaluation and
Optimisation (CoSDEO 2011). pp. 357–366. VDE (February 2011)

[3] Graff, D., Richling, J., Stupp, T.M., Werner, M.: Distributed active objects –
a systemic approach to distributed mobile applications. In: Sterrit, R. (ed.) 8th
IEEE International Conference and Workshops on Engineering of Autonomic and
Autonomous Systems. pp. 10–19. IEEE Computer Society (April 2011)

[4] Graff, D., Werner, M., Parzyjegla, H., Richling, J., Mühl, G.: An object-oriented
and context-aware approach for distributed mobile applications. In: Workshop on
Context-Systems Design, Evaluation and Optimisation (CoSDEO 2010) at ARCS
2010 - Architecture of Computing Systems. pp. 191–200 (2010)

[5] Lee, E.A.: Cyber-physical systems – are computing foundations adequate? In: Po-
sition Paper for NSFWorkshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap (October 2006)

[6] Lee, E.A.: The problem with threads. Computer 39, 33–42 (2006)
[7] Merlin, P.: A Study of the Recoverability of Communikation Protocols. Ph.D.

thesis, University of California, Computer Science Department, Irvine, CA, USA
(1974)

[8] Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Universität Bonn, In-
stitut für Instrumentelle Mathematik, Bonn (1962)

[9] Ramchandani, C.: Analysis of asynchronous concurrent systems by Timed Petri
Nets. Project MAC-TR 120, MIT, Massachusetts Institute of Technology, Cam-
bridge, MA, USA (Feb 1974)

[10] Werner, M.: A framework to find optimal iris schedules. Journal of Control and
Cybernetics 35(3), 703–719 (2006)

[11] Yee, S.T., Ventura, J.A.: A dynamic programming algorithm to determine optimal
assembly sequences using petri nets. International Journal of Industrial Engineer-
ing - Theory, Applications and Practice 6(1), 27–37 (1999)


	



