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Abstract. The paper presents comparative study for different heuris-
tics used by greedy algorithms for constructing of decision trees. We con-
sider the problem of exact learning for decision tables with discrete at-
tributes. We made experiments with randomly generated decision tables
contain attributes with three categories {0,1,2}. Complexity of decision
trees is estimated relative to several cost functions: depth, average depth,
number of nodes, number of terminal nodes and number of nonterminal
nodes. Costs of trees built by greedy algorithms are compared with exact
minimums calculated by an algorithm based on dynamic programming.
Based on the results we choose the best two greedy algorithms for each
cost function.
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1 Introduction

Decision trees are widely used as a way for knowledge representation, as predic-
tors and as algorithms for problem solving in rough set theory [12, 14], machine
learning and data mining [3], test theory [4], etc. To have more understandable
decision trees we need to minimize the number of nodes in a tree. To have faster
decision trees we need to minimize the depth or average depth of a tree. Un-
fortunately, the most problems connected with decision tree optimization are
NP-hard [9, 11].

The majority of approximate algorithms for decision tree optimization are
based on greedy approach. These algorithms build tree in a top-down fashion,
minimizing some impurity criteria at each step. There are several impurity crite-
ria designed using theoretical-information [13], statistical [3] and combinatorial
[10, 11] reasoning which can be used by greedy algorithms.

We assume that the decision tables contain only categorical attributes and
free of inconsistency. Several cost functions are considered that characterize space
and time complexity of decision trees: depth, average depth, and number of
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nodes, number of terminal nodes and number of nonterminal nodes. We use
randomly generated decision tables with attributes contain values from the set
{0,1,2}.

Costs of trees constructed by greedy algorithms are compared with exact min-
imum, calculated by an algorithm based on dynamic programming. The idea is
close to algorithms described in [5, 6], but authors devised it independently and
made several improvements. For example, the algorithm is capable of founding a
set of optimal trees and perform sequential optimization by different criteria [1,
2, 7] (we do not consider these extensions in the paper). An effective implemen-
tation allows for applying the algorithm to decision tables containing dozens of
columns (attributes) and hundreds to thousands rows (objects).

The paper is organized as follows. Section 2 introduces basic notions. Section
3 contains general schema of greedy algorithm. Section 4 describes an exact al-
gorithm based on dynamic programming. Section 5 presents experimental setup
and results of experiments. Section 6 contains conclusions.

2 Basic Notions

In this paper, we consider only decision tables with categorical attributes. These
tables do not contain missing values and equal rows. A decision table is a rect-
angular table T with m columns and N rows. Columns of T are labeled with
attributes f1, . . . , fm. Rows of T are filled by nonnegative integers which are
interpreted as values of these attributes. Rows are pairwise different, and each
row is labeled with a nonnegative integer which is interpreted as the decision.
We denote by E(T ) the set of attributes (columns of the table T ), each of which
contains different values. For fi ∈ E(T ), let E(T, fi) be the set of values from
the column fi. We denote by N(T ) the number of rows in the table T .

Let fi1 , . . . , fir ∈ {f1, . . . , fm} and b1, . . . , br be nonnegative integers. We
denote by T (fi1 , b1) . . . (fir , br) the subtable of the table T , which consists of
such and only such rows of T that at the intersection with columns fi1 , . . . , fir
have numbers b1, . . . , br respectively. Such nonempty tables (including the table
T ) will be called separable subtables of the table T .

Let rows of T be labeled with k different decisions d1, . . . , dk. For i = 1, . . . , k,
let Ni be the number of rows in T labeled with the decision di, and pi = Ni/N .

We consider four uncertainty measures for decision tables: entropy ent(T ) =

−
∑k
i=1 pi log2 pi (we assume 0 log2 0 = 0), Gini index gini(T ) = 1 −

∑k
i=1 p

2
i ,

minimum misclassification error me(T ) = N − max1≤j≤kNj , and the number
rt(T ) of unordered pairs of rows in T with different decisions (note that rt(T ) =
N2gini(T )/2).

Let fi ∈ E(T ) and E(T, fi) = {a1, . . . , at}. The attribute fi divides the
table T into subtables T1 = T (fi, a1), . . . , Tt = T (fi, at). We now define an
impurity function I which gives us the impurity I(T, fi) of this partition. Let
us fix an uncertainty measure U from the set {ent, gini,me, rt} and type of
impurity function: sum, max, weighted-sum, or weighted-max. Then for the type
sum, I(T, fi) =

∑t
j=1 U(Tj), for the type max, I(T, fi) = max1≤j≤t U(Tj), for
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the type weighted-sum, I(T, fi) =
∑t
j=1 U(Tj)N(Tj)/N(T ), and for the type

weighted-max, I(T, fi) = max1≤j≤t U(Tj)N(Tj)/N(T ). As a result, we have 16
different impurity functions.

A decision tree Γ over the table T is a finite directed tree with the root in
which each terminal node is labeled with a decision. Each nonterminal node is
labeled with an attribute from the set {f1, . . . , fm}, and for each nonterminal
node the outgoing edges are labeled with pairwise different nonnegative integers.
Let v be an arbitrary node of Γ . We now define a subtable T (v) of the table
T . If v is the root then T (v) = T . Let v be a node of Γ that is not the root,
nodes in the path from the root to v be labeled with attributes fi1 , . . . , fit , and
edges in this path be labeled with values a1, . . . , at respectively. Then T (v) =
T (fi1 , a1), . . . , (fit , at).

Let Γ be a decision tree over T . We will say that Γ is a decision tree for T
if any node v of Γ satisfies the following conditions:

– If rt(T (v)) = 0 then v is a terminal node labeled with the common decision
for T (v).

– Otherwise, v is labeled with an attribute fi ∈ E(T (v)) and, if E(T (v), fi) =
{a1, . . . , at}, then t edges leave node v, and these edges are labeled with
a1, . . . , at respectively.

We will consider cost functions which are given in the following way: values
of the considered cost function ψ, which are nonnegative numbers, are defined
by induction on pairs (T, Γ ), where T is a decision table and Γ is a decision
tree for T . Let Γ be a decision tree that contains only one node labeled with
a decision. Then ψ(T, Γ ) = ψ0 where ψ0 is a nonnegative number. Let Γ be a
decision tree in which the root is labeled with an attribute fi, and t edges start
in the root. These edges are labeled with numbers a1, . . . , at and enter roots of
decision trees Γ1, . . . , Γt. Then

ψ(T, Γ ) = F (N(T ), ψ(T (fi, a1), Γ1), . . . , ψ(T (fi, at), Γt)).

Here F (n, ψ1, ψ2, . . .) is an operator which transforms the considered tuple of
nonnegative numbers into a nonnegative number. Note that the number of vari-
ables ψ1, ψ2, . . . is not bounded from above.

The considered cost function will be called monotone if for any natural t, from
inequalities c1 ≤ d1, . . . , ct ≤ dt the inequality F (a, c1, . . . , ct) ≤ F (a, d1, . . . , dt)
follows. Now we take a closer view of some monotone cost functions.

Number of nodes: ψ(T, Γ ) is the number of nodes in decision tree Γ . For this
cost function, ψ0 = 1 and
F (n, ψ1, ψ2, . . . , ψt) = 1 +

∑t
i=1 ψi.

Depth: ψ(T, Γ ) is the maximum length of a path from the root to a ter-
minal node of Γ . For this cost function, ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) =
1 + max{ψ1, . . . , ψt}.

Total path length: for an arbitrary row δ̄ of the table T , we denote by l(δ̄) the
length of the path from the root to a terminal node v of Γ such that δ̄ belongs
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to T (v). Then ψ(T, Γ ) =
∑
δ̄ l(δ̄), where we take the sum on all rows δ̄ of the

table T . For this cost function, ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) = n+
∑t
i=1 ψi.

Note that the average depth of Γ is equal to the total path length divided
by N(T ).

Number of nonterminal nodes: ψ(T, Γ ) is the number of nonterminal nodes
in decision tree Γ . For this cost function, ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) =
1 +

∑t
i=1 ψi.

Number of terminal nodes: ψ(T, Γ ) is the number of terminal nodes in deci-
sion tree Γ . For this cost function, ψ0 = 1 and F (n, ψ1, ψ2, . . . , ψt) = 1+

∑t
i=1 ψi.

3 Greedy Approach

Let I be an impurity function. We now describe a greedy algorithm VI which
for a given decision table T constructs a decision tree VI(T ) for the table T .

Step 1. Construct a tree consisting of a single node labeled with the table T
and proceed to the second step.

Suppose t ≥ 1 steps have been made already. The tree obtained at the step
t will be denoted by G.

Step (t+ 1). If no node of the tree G is labeled with a table then we denote
by VI(T ) the tree G. The work of the algorithm VI is completed.

Otherwise, we choose a node v in the tree G which is labeled with a subtable
Θ of the table T . If rt(Θ) = 0 then instead of Θ we mark the node v by the
common decision for Θ and proceed to the step (t + 2). Let rt(Θ) > 0. Then
for each fi ∈ E(Θ) we compute the value I(T, fi). We mark the node v by the
attribute fi0 where i0 is the minimum i ∈ {1, . . . ,m} for which I(T, fi) has the
minimum value. For each δ ∈ E(Θ, fi0), we add to the tree G the node v(δ),
mark this node by the subtable Θ(fi0 , δ), draw the edge from v to v(δ), and
mark this edge by δ. Proceed to the step (t+ 2).

4 Dynamic Programming Approach

In this section, we describe a dynamic programming algorithm which for a mono-
tone cost function ψ and decision table T finds the minimum cost (relative to
the cost function ψ) of decision tree for T .

Consider an algorithm for construction of a graph ∆(T ). Nodes of ∆(T ) are
some separable subtables of the table T . During each step we process one node
and mark it with symbol *. We start with the graph that consists of one node
T and finish when all nodes of the graph are processed.

Let the algorithm have already performed p steps. We now describe the step
number (p + 1). If all nodes are processed then the work of the algorithm is
finished, and the resulted graph is ∆(T ). Otherwise, choose a node (table) Θ
that has not been processed yet. If rt(Θ) = 0, label the considered node with the
common decision for Θ, mark it with symbol * and proceed to the step number
(p+2). Let rt(Θ) > 0. For each fi ∈ E(Θ), draw a bundle of edges from the node
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Θ (this bundle of edges will be called fi-bundle). Let E(Θ, fi) = {a1, . . . , at}.
Then draw t edges from Θ and label these edges with pairs (fi, a1), . . . , (fi, at)
respectively. These edges enter into nodes Θ(fi, a1), . . . , Θ(fi, at). If some of
nodes Θ(fi, a1), . . . , Θ(fi, at) do not present in the graph then add these nodes
to the graph. Mark the node Θ with symbol * and proceed to the step number
(p+ 2).

Let ψ be a monotone cost function given by the pair ψ0, F . We now describe
a procedure, which attaches a number to each node of ∆(T ). We attach the
number ψ0 to each terminal node of ∆(T ).

Consider a node Θ, which is not terminal, and a bundle of edges, which starts
in this node. Let edges be labeled with pairs (fi, a1), . . . , (fi, at), and edges enter
to nodes
Θ(fi, a1), . . . , Θ(fi, at), to which numbers ψ1, . . . , ψt are attached already. Then
we attach to the considered bundle the number F (N(Θ), ψ1, . . . , ψt). Among
numbers attached to bundles starting in Θ we choose the minimum number and
attach it to the node Θ.

We stop when a number will be attached to the node T in the graph ∆(T ).
One can show that this number is the minimum cost (relative to the cost function
ψ) of decision tree for T .

5 Experimental Results

In this section, we consider results of 40000 experiments with randomly generated
decision tables.

Each table contains 50 rows and 10 conditional attributes. The values of
conditional and decision attributes are form the set {0,1,2}. We choose values 0,
1 and 2 with the same probability.

In some table there were rows that contains identical values in all columns,
possibly, except the decision column. In this case, each group of identical rows
was replaced with a single row with common values in all conditional columns
and the most common value on the decision column.

We divide 40000 experiments into four groups with 10000 experiments in
each. We study only exact decision trees, 16 greedy algorithms and five cost
function : depth h, average depth hav, number of nodes L, number of terminal
nodes Lt, and number of nonterminal nodes Ln.

Instead of the cost of decision tree, constructed by greedy algorithm
(greedy cost), we consider relative difference of greedy cost and min cost:

greedy cost−min cost

min cost
.

We will evaluate greedy algorithms based on this parameter. Let us remind that
each impurity function is defined by its type (sum, max, w sum or w max ) and
uncertainty measure (ent, gini, me, or rt).

We consider the average value of relative differences for each subgroup with
10000 tables. Tables 1–4 show the average values of relative difference for each
cost function, each heuristic and each group of experiments.
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Table 1. Average value of relative difference for given cost function for the first 10000
experiments with a given greedy algorithm using randomly generated tables

hav h L Ln Lt

max

ent 0.138302 0.186858 0.357019 0.375511 0.376977

gini 0.139207 0.187550 0.359458 0.378020 0.379447

me 0.135144 0.074800 0.449110 0.519650 0.441295

rt 0.110908 0.020700 0.450723 0.552395 0.425130

sum

ent 0.123865 0.317392 0.246790 0.238360 0.279813

gini 0.125776 0.318725 0.250817 0.242099 0.284070

me 0.089036 0.183867 0.261832 0.265028 0.288510

rt 0.058667 0.055800 0.260201 0.289344 0.271940

w max

ent 0.106484 0.023500 0.424265 0.513412 0.405216

gini 0.106813 0.022450 0.428339 0.520407 0.407705

me 0.109465 0.022375 0.439951 0.536621 0.416928

rt 0.113009 0.021100 0.460582 0.565543 0.433321

w sum

ent 0.061044 0.147225 0.208063 0.213318 0.232353

gini 0.058550 0.162608 0.201708 0.206141 0.226325

me 0.067257 0.070250 0.267331 0.288588 0.283719

rt 0.071824 0.028325 0.321480 0.377320 0.319250

Table 2. Average value of relative difference for given cost function for the second
10000 experiments with a given greedy algorithm using randomly generated tables

hav h L Ln Lt

max

ent 0.138712 0.185075 0.357875 0.376055 0.377325

gini 0.140094 0.189833 0.360672 0.379017 0.380087

me 0.135490 0.074650 0.450279 0.521118 0.441452

rt 0.111381 0.020467 0.452257 0.554366 0.425475

sum

ent 0.123562 0.316400 0.245598 0.236394 0.278312

gini 0.125225 0.317200 0.249042 0.240189 0.281641

me 0.089461 0.183208 0.263076 0.265206 0.289669

rt 0.059283 0.055242 0.261237 0.290686 0.272079

w max

ent 0.106932 0.022483 0.425617 0.515296 0.405387

gini 0.107179 0.021658 0.429923 0.523032 0.407837

me 0.109910 0.021792 0.441838 0.538607 0.417903

rt 0.113321 0.020392 0.461697 0.566410 0.433607

w sum

ent 0.060785 0.144725 0.208176 0.212770 0.232146

gini 0.058707 0.164792 0.202402 0.206397 0.226575

me 0.067250 0.069875 0.267388 0.288716 0.283043

rt 0.072385 0.026167 0.323450 0.380218 0.319947
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Table 3. Average value of relative difference for given cost function for the third 10000
experiments with a given greedy algorithm using randomly generated tables

hav h L Ln Lt

max

ent 0.137617 0.185158 0.353147 0.371859 0.372711

gini 0.138883 0.188250 0.355873 0.375106 0.375185

me 0.135333 0.075883 0.448485 0.519380 0.440130

rt 0.110708 0.019942 0.449727 0.550888 0.424056

sum

ent 0.123628 0.314350 0.245469 0.236374 0.278650

gini 0.125314 0.316175 0.248820 0.239650 0.282114

me 0.089613 0.181408 0.262751 0.265691 0.289410

rt 0.059529 0.055175 0.261563 0.291150 0.272876

w max

ent 0.106469 0.023742 0.422727 0.511061 0.403858

gini 0.106778 0.022392 0.427845 0.519391 0.407232

me 0.109522 0.021867 0.439807 0.536012 0.416775

rt 0.113163 0.019967 0.460472 0.565323 0.432915

w sum

ent 0.061365 0.145375 0.208717 0.213383 0.233150

gini 0.058957 0.162283 0.201743 0.205992 0.226279

me 0.067432 0.070033 0.266903 0.288704 0.282819

rt 0.072100 0.025883 0.321725 0.377865 0.319149

Table 4. Average value of relative difference for given cost function for the fourth
10000 experiments with a given greedy algorithm using randomly generated tables

hav h L Ln Lt

max

ent 0.137746 0.182383 0.354142 0.371413 0.374584

gini 0.138820 0.184333 0.356370 0.374508 0.376382

me 0.135861 0.075050 0.449204 0.519590 0.441291

rt 0.110753 0.020025 0.450736 0.551287 0.425463

sum

ent 0.123646 0.315375 0.244816 0.235797 0.278023

gini 0.125661 0.318083 0.248975 0.239853 0.282362

me 0.091105 0.186658 0.265199 0.268307 0.291879

rt 0.059374 0.054725 0.262123 0.290910 0.273949

w max

ent 0.106344 0.023408 0.423681 0.511672 0.405050

gini 0.106676 0.022667 0.428509 0.519639 0.408184

me 0.109939 0.022792 0.441653 0.537470 0.418941

rt 0.113125 0.020075 0.461237 0.565246 0.434245

w sum

ent 0.061625 0.145508 0.209636 0.214445 0.234108

gini 0.059607 0.161550 0.203449 0.207444 0.228237

me 0.067749 0.070042 0.268840 0.289638 0.285424

rt 0.072147 0.027242 0.322424 0.378150 0.320088
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To summarize the results, we chose the best two heuristics for each cost
function. Table 5 shows the best two greedy algorithms for each cost function.

Table 5. The best two greedy algorithms for each cost function

cost function The best two greedy algorithms

hav (sum, rt), (w sum, gini)

h (max, rt), (w max, rt)

L (w sum, gini), (w sum, ent)

Ln (w sum, gini), (w sum, ent)

Lt (w sum, gini), (w sum, ent)

6 Conclusions

The paper is devoted to the study of 16 greedy algorithms for decision tree con-
struction. For 40000 randomly generated decision tables with attributes contains
three values {0,1,2} we compare the values of depth, average depth, number of
nodes, number of nonterminal nodes and number of terminal nodes, constructed
by these algorithms, with the minimums found by an algorithm based on dy-
namic programming approach. The best two greedy algorithms were selected for
each cost function.
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